

Advanced Apple Debugging & Reverse Engineering
Derek Selander

Copyright ©2017 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,

images, or source code) may be reproduced or distributed by any means without prior

written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as

is” basis, without warranty of any kind, express of implied, including but not limited to

the warranties of merchantability, fitness for a particular purpose, and

noninfringement. In no event shall the authors or copyright holders be liable for any

claim, damages or other liability, whether in action of contract, tort or otherwise,

arising from, out of or in connection with the software or the use of other dealing in the

software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of

their own respective owners.

Advanced Apple Debugging

raywenderlich.com 2

Dedications
"I would like to thank my wife, Brittany, for all her love and support

while I silently wept in the fetal position trying to get this book out

the door"

— Derek Selander

Advanced Apple Debugging

raywenderlich.com 3

About the author
Derek Selander is the author of this book. His interest with

debugging grew when he started exploring how to make (the now

somewhat obsolete) Xcode plugins and iOS tweaks on his jailbroken

phone, both of which required exploring and augmenting programs

with no source available. In his free time, he enjoys pickup soccer,

guitar, and playing with his two doggies, Jake & Squid.

About the editors
Chris Belanger is the editor of this book. Chris Belanger is the Book

Team Lead and Lead Editor for raywenderlich.com. If there are words

to wrangle or a paragraph to ponder, he‘s on the case. When he kicks

back, you can usually find Chris with guitar in hand, looking for the

nearest beach, or exploring the lakes and rivers in his part of the

world in a canoe.

Matt Galloway is a software engineer with a passion for excellence.

He stumbled into iOS programming when it first was a thing, and has

never looked back. When not coding, he likes to brew his own beer.

Darren Ferguson is the final pass editor of this book. He is a

Software Developer, with a passion for mobile development, for a

leading systems integration provider based out of Northern Virginia

in the D.C. metro area. When he's not coding, you can find him

enjoying life with his wife and daughter trying to travel as much as

possible.

Advanced Apple Debugging

raywenderlich.com 4

Table of Contents: Overview
Introduction 15...

Section I: Beginning LLDB Commands 20..............

Chapter 1: Getting Started 21...............................

Chapter 2: Help & Apropos 36..............................

Chapter 3: Attaching with LLDB 41......................

Chapter 4: Stopping in Code 48...........................

Chapter 5: Expression 66.....................................

Chapter 6: Thread, Frame & Stepping
Around 80..

Chapter 7: Image 90...

Chapter 8: Persisting & Customizing
Commands 105...

Chapter 9: Regex Commands 110........................

Section II: Understanding Assembly 119.................

Chapter 10: Assembly Register Calling
Convention 120...

Chapter 11: Assembly & Memory 141...................

Chapter 12: Assembly and the Stack 157............

Section III: Low Level 178..

Chapter 13: Hello, Ptrace 179...............................

Advanced Apple Debugging

raywenderlich.com 5

Chapter 14: Dynamic Frameworks 189................

Chapter 15: Hooking & Executing Code
with dlopen & dlsym 203......................................

Chapter 16: Exploring and Method
Swizzling Objective-C Frameworks 220..............

Section IV: Custom LLDB Commands 242..............

Chapter 17: Hello Script Bridging 243..................

Chapter 18: Debugging Script Bridging 253........

Chapter 19: Script Bridging Classes and
Hierarchy 268..

Chapter 20: Script Bridging with Options &
Arguments 288..

Chapter 21: Script Bridging with SBValue &
Memory 314..

Chapter 22: SB Examples, Improved
Lookup 339...

Chapter 23: SB Examples, Resymbolicating
a Stripped ObjC Binary 356..................................

Chapter 24: SB Examples, Malloc Logging 372...

Section V: DTrace 397...

Chapter 25: Hello, DTrace 398.............................

Chapter 26: Intermediate DTrace 417..................

Chapter 27: DTrace vs objc_msgSend 435..........

Advanced Apple Debugging

raywenderlich.com 6

Appendix A: LLDB Cheatsheet 463......................

Appendix B: Python Environment Setup 470.......

Conclusion 474..

Advanced Apple Debugging

raywenderlich.com 7

Table of Contents: Extended
Introduction 15...

What you need 16...
Who this book is for 16...
Book source code and forums 17...
Book updates 17...
Custom LLDB scripts repo 17...
License 18...
Acknowledgments 19...
About the cover 19...

Section I: Beginning LLDB Commands 20..............

Chapter 1: Getting Started 21......................................
Getting around Rootless 22..
Attaching LLDB to Xcode 24..
Where to go from here? 35..

Chapter 2: Help & Apropos 36....................................
The "help" command 37...
The "apropos" command 39..
Where to go from here? 40..

Chapter 3: Attaching with LLDB 41.............................
Where to go from here? 47...

Chapter 4: Stopping in Code 48.................................
Signals 49...
LLDB breakpoint syntax 52..
Finally... creating breakpoints 56..
Where to go from here? 64..

Chapter 5: Expression 66..
Formatting p & po 67..
Swift vs Objective-C debugging contexts 71...

Advanced Apple Debugging

raywenderlich.com 8

User defined variables 72...
Where to go from here? 79...

Chapter 6: Thread, Frame & Stepping Around 80......
Stack 101 81..
Examining the stackʼs frames 82..
Stepping 85..
Examining data in the stack 87...
Where to go from here? 89..

Chapter 7: Image 90..
Wait... modules? 91..
Snooping around 99...
Where to go from here? 104...

Chapter 8: Persisting & Customizing
Commands 105..

Persisting... how? 106...
Creating the .lldbinit file 106..
Command aliases with arguments 108...
Where to go from here? 109...

Chapter 9: Regex Commands 110...............................
command regex 111..
Executing complex logic 112...
Chaining regex inputs 114...
Supplying multiple parameters 116..
Where to go from here? 118...

Section II: Understanding Assembly 119.................

Chapter 10: Assembly Register Calling
Convention 120..

Assembly 101 121..
x86_64 register calling convention 123..
Objective-C and registers 125..

Advanced Apple Debugging

raywenderlich.com 9

Putting theory to practice 126..
Swift and registers 131...
RAX, the return register 133...
Changing around values in registers 134...
Registers and SDK 137...
Where to go from here? 139...

Chapter 11: Assembly & Memory 141..........................
Setting up the Intel-Flavored Assembly Experience™ 142......................
The RIP register 145...
Registers and breaking up the bits 148..
Breaking down the memory 151...
Endianness... this stuff is reversed? 154..
Where to go from here? 156...

Chapter 12: Assembly and the Stack 157...................
The stack, revisited 158...
Stack pointer & base pointer registers 159..
Stack related opcodes 161...
Observing RBP & RSP in action 163...
The stack and 7+ parameters 170..
The stack and debugging info 172...
Stack exploration takeaways 175..
Where to go from here? 176...

Section III: Low Level 178..

Chapter 13: Hello, Ptrace 179......................................
System calls 180...
The foundation of attachment, ptrace 180...
ptrace arguments 182..
Creating attachment issues 185...
Getting around PT_DENY_ATTACH 186..
Other anti-debugging techniques 188...
Where to go from here? 188...

Advanced Apple Debugging

raywenderlich.com 10

Chapter 14: Dynamic Frameworks 189.......................
Why dynamic frameworks? 190..
Statically inspecting an executableʼs frameworks 190.............................
Modifying the load commands 194..
Loading frameworks at runtime 197...
Exploring frameworks 198..
Loading frameworks on an actual iOS device 201....................................
Where to go from here? 202..

Chapter 15: Hooking & Executing Code with
dlopen & dlsym 203..

The Objective-C runtime vs. Swift & C 204...
Setting up your project 204...
Easy mode: hooking C functions 205...
Hard mode: hooking Swift methods 213..
Where to go from here? 219...

Chapter 16: Exploring and Method Swizzling
Objective-C Frameworks 220.....................................

Between iOS 10 and 11 221...
Sidestepping checks in prepareDebuggingOverlay 228..........................
Introducing Method Swizzling 233...
Where to go from here? 240..

Section IV: Custom LLDB Commands 242..............

Chapter 17: Hello Script Bridging 243.........................
Credit where credit's due 244..
Python 101 244...
Creating your first LLDB Python script 248...
Setting up commands efficiently 250..
Where to go from here? 252..

Chapter 18: Debugging Script Bridging 253...............
Debugging your debugging scripts with pdb 254....................................

Advanced Apple Debugging

raywenderlich.com 11

pdbʼs post mortem debugging 256..
expressionʼs Debug Option 261..
How to handle problems 265...
Where to go from here? 267..

Chapter 19: Script Bridging Classes and
Hierarchy 268..

The essential classes 269..
Learning & finding documentation on script bridging classes 274..........
Creating the BreakAfterRegex command 276..
Where to go from here? 286..

Chapter 20: Script Bridging with Options &
Arguments 288..

Setting up 289..
The optparse Python module 291..
Adding options without params 291...
Adding options with params 298...
Passing parameters into the breakpoint callback function 302...............
Real world example: exploring Swift return Strings with bar 308............
Where to go from here? 313...

Chapter 21: Script Bridging with SBValue &
Memory 314...

A detour down memory layout lane 315...
SBValue 328...
lldb.value 337...
Where to go from here? 337..

Chapter 22: SB Examples, Improved Lookup 339......
Automating script creation 340..
lldbinit directory structure suggestions 342..
Implementing the lookup command 343..
Adding options to lookup 351...
Where to go from here? 354..

Advanced Apple Debugging

raywenderlich.com 12

Chapter 23: SB Examples, Resymbolicating a
Stripped ObjC Binary 356...

So how are you doing this, exactly? 357..
50 Shades of Ray 358..
The "stripped" 50 Shades of Ray 365..
Building sbt.py 368..
Implementing the code 369...
Where to go from here? 371...

Chapter 24: SB Examples, Malloc Logging 372.........
Setting up the scripts 373..
MallocStackLogging explained 374..
Hunting in getenv 377..
Testing the functions 382..
Turning numbers into stack frames 387...
Stack trace from a Swift object 390...
DRY Python code 391...
Where to go from here? 396..

Section V: DTrace 397...

Chapter 25: Hello, DTrace 398....................................
The bad news 399..
Jumping right in 399..
DTrace Terminology 403..
Learning while listing probes 406..
A script that makes DTrace scripts 408...
Where to go from here? 416...

Chapter 26: Intermediate DTrace 417.........................
Getting started 418..
DTrace & Swift in theory 418..
DTrace variables & control flow 422..
Inspecting process memory 426..
Playing with open syscalls 428..

Advanced Apple Debugging

raywenderlich.com 13

DTrace & destructive actions 430..
Where to go from here? 433..

Chapter 27: DTrace vs objc_msgSend 435................
Building your proof-of-concept 436..
How to get around no probes in a stripped binary 440...........................
Researching method calls using... DTrace! 441.......................................
Scary assembly, part II 449..
Converting research into code 451..
Limiting scope with LLDB 456..
Fixing up the snoopie script 460..
Where to go from here? 461...

Appendix A: LLDB Cheatsheet 463............................
Getting help 463..
Finding code 463..
Breakpoints 464...
Expressions 465...
Stepping 466..
GDB formatting 467...
Memory 467...
Registers & assembly 468..
Modules 469..

Appendix B: Python Environment Setup 470..............
Getting Python 470..
Python text editors 470..
Working with the LLDB Python module 473...

Conclusion 474..

Advanced Apple Debugging

raywenderlich.com 14

IIntroduction

Debugging has a rather bad reputation. I mean, if the developer had a complete

understanding of the program, there wouldn’t be any bugs and they wouldn’t be

debugging in the first place, right?

Don’t think like that.

There are always going to be bugs in your software — or any software, for that matter.

No amount of test coverage imposed by your product manager is going to fix that. In

fact, viewing debugging as just a process of fixing something that’s broken is actually a

poisonous way of thinking that will mentally hinder your analytical abilities.

Instead, you should view debugging as simply a process to better understand a

program. It’s a subtle difference, but if you truly believe it, any previous drudgery of

debugging simply disappears.

The same negative connotation can also be applied to reverse engineering software.

Images of masked hackers stealing bank accounts and credit cards may come to mind,

but for this book, reverse engineering really is just debugging without source code —

which in turn helps you gain a better understanding of a program or system.

There's nothing wrong with reverse engineering in itself. In fact if debugging was a

game, then reverse engineering is simply debugging on the “difficult” setting — which is

quite a fun setting if you’ve been playing the game for a while. :]

In this book, you'll come to realize debugging is an enjoyable process to help you better

understand software. Not only will you learn to find bugs faster, but you’ll also learn

how other developers have solved problems similar to yours. You'll also learn how to

create custom, powerful debugging scripts that will help you quickly find answers to

any item that piques your interest, whether it’s in your code — or someone else’s.

raywenderlich.com 15

What you need
To follow along with the tutorials in this book, you’ll need the following:

• A Mac running High Sierra (10.13) or later. Earlier versions might work, but they're

untested.

• Xcode 9.1 or later. Packaged with Xcode is the latest and greatest version of LLDB,

the debugger you’ll use extensively throughout this book. At the time of this writing,

the version of LLDB packaged with Xcode is lldb-900.0.57.

• Python 2.7. LLDB uses Python 2.7 to run its Python scripts. Fortunately, Python 2.7

automatically ships with macOS, as well as with Xcode. You can verify you have the

correct version installed by typing python --version in Terminal.

• A 64 bit iOS device running iOS 10 or later, and a paid membership to the iOS

development program [optional]. For most chapters in the book, you can run any

iOS programs in the Simulator. However, you’ll get more out of this book by using a

64-bit iOS device to test out certain ideas or suggestions littered throughout the

book.

Once you have these items in place, you’ll be able to follow along with almost every

chapter in this book. For certain sections, you'll need to disable the Rootless security

feature in order to use some of the tools (i.e. DTrace). This is discussed in Chapter 1.

Who this book is for
The art of debugging code should really be studied by every developer. However, there

will be some of you that will get more out of this book. This book is written for:

• Developers who want to become better at debugging with LLDB

• Developers who want to build complex debugging commands with LLDB

• Developers who want to take a deeper dive into internals of Swift and Objective-C

• Developers who are interested in understanding what they can do to their program

through reverse engineering

• Developers who are interested in modern, proactive reverse engineering strategies

• Developers who want to be confident in finding answers to questions they have about

their computer or software

Advanced Apple Debugging Introduction

raywenderlich.com 16

This book is for intermediate to advanced developers who want to take their debugging
and code exploration game to the next level.

Book source code and forums
This book comes with the source code, Python scripts, starter and completed projects

for each chapter. These resources are shipped with the PDF.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a

great place to ask questions about the book, discuss debugging strategies or to submit

any errors you may find.

Book updates
Great news: since you purchased the PDF version of this book, you’ll receive free

updates of the book’s content!

The best way to receive update notifications is to sign up for our weekly newsletter. This

includes a list of the tutorials published on raywenderlich.com in the past week,

important news items such as book updates or new books, and a few of our favorite

developer links. Sign up here:

• www.raywenderlich.com/newsletter

Custom LLDB scripts repo
Finally, you can find a repo of interesting LLDB Python scripts here:

https://github.com/DerekSelander/LLDB

These scripts will help aid in your debugging/reverse engineering sessions and provide

novel ideas for your own LLDB scripts.

Advanced Apple Debugging Introduction

raywenderlich.com 17

License
By purchasing Advanced Apple Debugging & Reverse Engineering, you have the following

license:

• You're allowed to use and/or modify the source code in Advanced Apple Debugging &

Reverse Engineering in as many applications as you want, with no attribution

required.

• You're allowed to use and/or modify all art, images, or designs that are included in

Advanced Apple Debugging & Reverse Engineering in as many applications as you

want, but must include this attribution line somewhere inside your game: “Artwork/

images/designs: from the Advanced Apple Debugging & Reverse Engineering book,

available at www.raywenderlich.com”.

• The source code included in Advanced Apple Debugging & Reverse Engineering is for

your own personal use only. You're NOT allowed to distribute or sell the source code

in Advanced Apple Debugging & Reverse Engineering without prior authorization.

• This book is for your own personal use only. You're NOT allowed to sell this book

without prior authorization, or distribute it to friends, co-workers, or students; they

must to purchase their own copy instead.

All materials provided with this book are provided on an “as is” basis, without warranty

of any kind, express or implied, including but not limited to the warranties of

merchantability, fitness for a particular purpose and noninfringement. In no event shall

the authors or copyright holders be liable for any claim, damages or other liability,

whether in an action of contract, tort or otherwise, arising from, out of or in connection

with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the property of

their respective owners.

Advanced Apple Debugging Introduction

raywenderlich.com 18

Acknowledgments
We would like to thank many people for their assistance in making this possible:

• Our families: For bearing with us in this crazy time as we worked all hours of the

night to get this book ready for publication!

• Everyone at Apple: For developing an amazing platform, for constantly inspiring us

to improve our games and skill sets and for making it possible for many developers to

make a living doing what they love!

• And most importantly, the readers of raywenderlich.com — especially you!

Thank you so much for reading our site and purchasing this book. Your continued

readership and support is what makes all of this possible!

About the cover
The Wana (pronounced “vah-na”) is a sea urchin native to the Indo-West Pacific region.

This sea urchin has two types of spines: a longer hollow spine and a shorter, toxin

producing spine. The Wana contains light-sensitive nerves on its skin which can detect

potential threats and can move its spines accordingly towards the threat.

Much like finding bugs in a program, stepping on one of these creatures really, really

sucks. Pain settles in (inflicted by either your product manager or the sea urchin) and

can last up to several hours, even though the issue may remain for an extended period

of time. In addition, just like bugs in a program, if you find one of these lovely creatures,

there are usually many more in close proximity!

Advanced Apple Debugging Introduction

raywenderlich.com 19

Section I: Beginning LLDB
Commands

This section will cover the basics of using LLDB, Apple’s software debugger. You’ll

explore an application named Signals, an Objective-C/Swift application that illustrates

how Unix signals can be processed within an application. You’ll learn some strategies to

find and create Swift syntax-style breakpoints as well as Objective-C style breakpoints.

By the end of this section, you’ll be able to wield the debugger to perform most of the

basic tasks needed for debugging, as well as create your own simple custom commands.

Chapter 1: Getting Started

Chapter 2: Help & Apropos

Chapter 3: Attaching with LLDB

Chapter 4: Stopping in Code

Chapter 5: Expression

Chapter 6: Thread, Frame and Stepping Around

Chapter 7: Image

Chapter 8: Persisting & Customizing Commands

Chapter 9: Regex Commands

raywenderlich.com 20

1Chapter 1: Getting Started

In this chapter, you’re going to get acquainted with LLDB and investigate the process of

introspecting and debugging a program. You’ll start off by introspecting a program you

didn’t even write — Xcode!

You’ll take a whirlwind tour of a debugging session using LLDB and discover the

amazing changes you can make to a program you’ve absolutely zero source code for.

This first chapter heavily favors doing over learning, so a lot of the concepts and deep

dives into certain LLDB functionality will be saved for later chapters.

Let’s get started.

raywenderlich.com 21

Getting around Rootless
Before you can start working with LLDB, you need to learn about a feature introduced

by Apple to thwart malware. Unfortunately, this feature will also thwart your attempts

to introspect and debug using LLDB and other tools like DTrace. Never fear though,

because Apple included a way to turn this feature off — for those who know what

they’re doing. And you’re going to become one of these people who knows what they’re

doing!

The feature blocking your introspection and debugging attempts is System Integrity

Protection, also known as Rootless. This system restricts what programs can do —

even if they have root access — to stop malware from planting itself deep inside your

system.

Although Rootless is a substantial leap forward in security, it introduces some

annoyances as it makes programs harder to debug. Specifically, it prevents other

processes from attaching a debugger to programs Apple signs.

Since this book involves debugging not only your own applications, but any application

you’re curious about, it’s important that you to remove this feature while you learn

about debugging so you can inspect any application of your choosing.

If you currently have Rootless enabled, you’ll be unable to attach to the majority of

Apple’s programs. There are exceptions however, such as any apps shipped on the iOS

Simulator.

For example, try attaching LLDB to the Finder application.

Open up a Terminal window and look for the Finder process, like so:

lldb -n Finder

You’ll notice the following error:

error: attach failed: cannot attach to process due to System Integrity
Protection

Note: There are many ways to attach to a process, as well as specific
configurations when LLDB attaches successfully. To learn more about attaching to
a process, check out Chapter 3, “Attaching with LLDB”.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 22

Disabling Rootless
To disable Rootless, perform the following steps:

1. Restart your macOS machine.

2. When the screen turns blank, hold down Command + R until the Apple boot logo

appears. This will put your computer into Recovery Mode.

3. Now, find the Utilities menu from the top and then select Terminal.

4. With the Terminal window open, type:

csrutil disable; reboot

5. Your computer will restart with Rootless disabled.

Note: A safer way to follow along with this book would be to create a dedicated
virtual machine using VMWare or VirtualBox and only disable Rootless on this.

You can verify if you’ve successfully disabled Rootless by trying the same command in

Terminal again once you log into your account.

lldb -n Finder

LLDB should now attach itself to the current Finder process. The output of a successful

attach should look like this:

After verifying a successful attach, detach LLDB by either killing the Terminal window,

or typing quit and confirming in the LLDB console.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 23

Attaching LLDB to Xcode
Now that you’ve disabled Rootless, you can attach LLDB to any process on your macOS

machine (some hurdles may apply, such as with ptrace, but we’ll get to that later).

You’re first going to look into an application you frequently use in your day-to-day

development: Xcode! Make sure you have the latest version of Xcode 9 installed on

your computer before continuing.

Open a new Terminal window. Next, edit the Terminal tab’s title by pressing ⌘ + Shift +

I. A new popup window will appear. Edit the Tab Title to be LLDB.

Next, make sure Xcode isn’t running, or you’ll end up with multiple running instances

of Xcode, which could cause confusion.

In Terminal, type the following:

lldb

This launches LLDB.

Create a new Terminal tab by pressing ⌘ + T. Edit the tab’s title again using ⌘ + Shift +

I and name the tab Xcode stderr. This Terminal tab will contain all output when you

print content from the debugger.

Make sure you are on the Xcode stderr Terminal tab and type the following:

~ $ tty

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 24

You should see something similar to below:

/dev/ttys027

Don’t worry if yours is different; I’d be surprised if it wasn’t. Think of this as the

address to your Terminal session.

To illustrate what you’ll do with the Xcode stderr tab, create yet another tab and type

the following into it:

echo "hello debugger" 1>/dev/ttys027

Be sure to replace your Terminal path with your unique one obtained from the tty

command.

Now switch back to the Xcode stderr tab. The words hello debugger should have

popped up. You’ll use the same trick to pipe the output of Xcode’s stderr to this tab.

Finally, close the third, unnamed tab and navigate back to the LLDB tab.

To summarize: You should now have two Terminal tabs: a tab named "LLDB", which

contains an instance of LLDB running, and another tab named "Xcode stderr", which

contains the tty command you performed earlier.

From there, enter the following into LLDB:

(lldb) file /Applications/Xcode.app/Contents/MacOS/Xcode

This will set the executable target to Xcode.

Note: If you are using a prerelease version of Xcode, then the name and path of
Xcode could be different.

You can check the path of the Xcode you are currently running by launching Xcode
and typing the following in Terminal:

$ ps -ef `pgrep -x Xcode`

Once you have the path of Xcode, use that new path instead.

Now launch the Xcode process from LLDB, replacing /dev/ttys027 with your Xcode

stderr tab’s tty address again:

(lldb) process launch -e /dev/ttys027 --

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 25

The launch argument e specifies the location of stderr. Common logging functionality,

such as Objective-C’s NSLog or Swift’s print function, outputs to stderr — yes, not

stdout! You will print your own logging to stderr later.

Xcode will launch after a moment. Switch over to Xcode and click File ▸ New ▸

Project.... Next, select iOS ▸ Application ▸ Single View Application and click Next.

Name the product Hello Debugger. Make sure to select Swift as the programming

language and deselect any options for Unit or UI tests. Click Next and save the project

wherever you wish.

You now have a new Xcode project. Arrange the windows so you can see both Terminal

and Xcode.

Navigate to Xcode and open ViewController.swift.

Note: You might notice some output on the Xcode stderr Terminal window; this is
due to content logged by the authors of Xcode via NSLog or another stderr console
printing function.

A "Swiftly" changing landscape
Apple has been cautious in its adoption of Swift in its own software — and

understandably so. No matter one’s (seemingly religious) beliefs on Swift, for better or

worse, it’s still an immature language moving at an incredible pace with breaking

changes. I still have flashbacks of the “great” Swift 2.2 -> 3.0 migration and I am sure

many of you do too.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 26

These large codebase migrations do not sit well in enterprise environments where
frameworks with different dependencies have to play nicely with each other. If one
framework containing Swift code has breaking changes, it can bring down a whole
codebase. Then imagine if hundreds of frameworks contained Swift; it would be a
dependency hell to migrate each framework without breaking the many different repos
that depend upon on these frameworks.

However, things are a changin’ at Apple. Apple is now more aggressively adopting Swift

in their own applications such as the iOS Simulator... and even Xcode!

At last count, Xcode 9 includes over 40 frameworks which contain Swift.

You can query this information yourself by typing the following into LLDB:

 (lldb) script print "\n".join([i.file.basename for i in
lldb.target.modules if i.FindSection("__swift3_typeref")])

This will dump out all the dynamically loaded modules Xcode has loaded into the

process that contain or link to Swift code.

This is using Python along with LLDB’s Python module (confusingly also called "lldb").

You’ll get very accustomed to working with this module in section IV of this book as

you learn to build custom, advanced LLDB scripts.

From this list of dynamic Swift libraries, one is a particular module of interest:

IDEPegasusSourceEditor. This is a dynamic library (just like UIKit or Foundation) that

contains some interesting Swift classes pertaining to the code editing views in Xcode.

Note: Apple frequently uses code names for internal development features. For
example, an iPad’s picture-on-picture feature is commonly referred to as
“Medusa” in internal methods — and no, not all Apple code names are Greek code
names. So, what’s up with this Pegasus name? There’s often specific reasoning to
the Apple development team (or manager/s?) assigning these names. Your guess is
as good as mine, but I can see a logical connection between a mythological
creature that symbolizes wisdom and the visual display to your source code.

Remember this module name, as you’ll be seeing it quite a bit in a second.

Finding a class with a click
Now that Xcode is set up and your Terminal debugging windows are correctly created

and positioned, it’s time to start exploring Xcode using the help of the debugger.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 27

While debugging, knowledge of the Cocoa SDK can be extremely helpful. For example, -

[NSView hitTest:] is a useful Objective-C method that returns the class responsible for

the handled click or gesture for an event in the run loop. This method will first be

triggered on the containing NSView and recursively drill into the furthest subview that

handles this touch. You can use this knowledge of the Cocoa SDK to help determine the

class of the view you’ve clicked on.

In your LLDB tab, type Ctrl + C to pause the debugger. From there, type:

(lldb) b -[NSView hitTest:]
Breakpoint 1: where = AppKit`-[NSView hitTest:], address =
0x000000010338277b

This is your first breakpoint of many to come. You’ll learn the details of how to create,

modify, and delete breakpoints in Chapter 4, “Stopping in Code”, but for now simply

know you’ve created a breakpoint on -[NSView hitTest:].

Xcode is now paused thanks to the debugger. Resume the program:

(lldb) continue

Click anywhere in the Xcode window (or in some cases even moving your cursor over

Xcode will do the same); Xcode will instantly pause and LLDB will indicate a breakpoint

has been hit.

The hitTest: breakpoint has fired. You can inspect which view was hit by inspecting

the RDI CPU register. Print it out in LLDB:

(lldb) po $rdi

This command instructs LLDB to print out the contents of the object at the memory

address referenced by what’s stored in the RDI assembly register.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 28

Note: Wondering why the command is po? po stands for print object. There’s also p,
which simply prints the contents of RDI. po is usually more useful as it gives the
NSObject’s description or debugDescription methods, if available.

Assembly is an important skill to learn if you want to take your debugging to the next

level. It will give you insight into Apple’s code — even when you don’t have any source

code to read from. It will give you a greater appreciation of how the Swift compiler team

danced in and out of Objective-C with Swift, and it will give you a greater appreciation

of how everything works on your Apple devices.You will learn more about registers and

assembly in Chapter 10, “Assembly Register Calling Convention”.

For now, simply know the $rdi register in the above LLDB command contains the

instance of the subclass NSView the hitTest: method was called upon.

Note the output will produce different results depending on where you clicked and what

version of Xcode you’re using. It could give a private class specific to Xcode, or it could

give you a public class belonging to Cocoa.

In LLDB, type the following to resume the program:

(lldb) continue

Instead of continuing, Xcode will likely hit another breakpoint for hitTest: and pause

exection. This is due to the fact that the hitTest: method is recursively calling this

method for all subviews contained within the parent view that was clicked. You can

inspect the contents of this breakpoint, but this will soon become tedious since there

are so many views that make up Xcode.

Filter breakpoints for important content
Since there are so many NSViews that make up Xcode, you need a way to filter out some

of the noise and only stop on the NSView relevant to what you’re looking for. This is an

example of debugging a frequently-called method, where you want to find a unique case

that helps pinpoint what you’re really looking for.

As of Xcode 9, the class responsible for visually displaying your code in the Xcode IDE is

a private Swift class belonging to the IDEPegasusSourceEditor module, named

SourceCodeEditorView. This class acts as the visual coordinator to hand off all your

code to other private classes to help compile and create your applications.

Let’s say you want to break only when you click an instance of NSView. You can modify

the existing breakpoint to stop only on a NSView click by using breakpoint conditions.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 29

Provided you still have your -[NSView hitTest:] breakpoint set, and it’s the only active
breakpoint in your LLDB session, you can modify that breakpoint with the following
LLDB command:

(lldb) breakpoint modify 1 -c '(BOOL)[$rdi isKindOfClass:
(id)NSClassFromString(@"IDEPegasusSourceEditor.SourceCodeEditorView")]'

This command modifies breakpoint 1 and creates a condition which gets evaluated

everytime -[NSView hitTest:] fires. If the condition evaluates to true, then execution

will pause in the debugger. This condition checks that the instance of the NSView is of

type IDEPegasusSourceEditor.SourceCodeEditorView.

After modifying your breakpoint above, click on the code area in Xcode. LLDB should

stop on hitTest:. Print out the instance of the class this method was called on:

(lldb) po $rdi

Your output should look something like this:

SourceCodeEditorView: Frame: (0.0, 0.0, 1140.0, 393.0), Bounds: (0.0,
0.0, 1140.0, 393.0) contentViewOffset: 0.0

This is printing out the object’s description. You’ll notice that there is no pointer

reference within this, because Swift hides the pointer reference. There’s several ways to

get around this if you need the pointer reference. The easiest is to use print

formatting. Type the following in LLDB:

(lldb) p/x $rdi

You’ll get something like:

(unsigned long) $3 = 0x00007f96f10b3a00

Since RDI points to a valid Objective-C NSObject, you can also get the same info just by

po’ing this address instead of the register.

Type the following into LLDB while making sure to replace the address with your own:

(lldb) po 0x00007f96f10b3a00

You’ll get the same output as earlier.

You might be skeptical that this reference pointed at by the RDI register is actually

pointing to the NSView that displays your code. You can easily verify if that’s true or not

by typing the following in LLDB:

(lldb) po [$rdi setHidden:!(BOOL)[$rdi isHidden]]; [CATransaction flush]

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 30

Note: Kind of a long command to type out, right? In Chapter 9. “Regex
Commands”, you’ll learn how to build convenient shortcuts so you don’t have to
type out these long LLDB commands.

Provided RDI is pointing to the correct reference, your code editor view will disappear!

You can toggle this view on and off simply by repeatedly pressing Enter; LLDB will

automatically execute the previous command.

Copy the address down that RDI is referencing (copy it to your clipboard or add it to the

stickies app). You’ll reference it again in a second. Alternatively, did you notice that

output preceding the hex value in the p/x $rdi command? In my output, I got $3,

which means that you can use $3 as a reference for that pointer value you just grabbed.

This is incredibly useful when the RDI register points to something else and I still want

to reference this NSView at a later time.

Since this isn’t immediately apparent as an NSView subclass, you can check if this

instance is an NSView subclass by repeatedly figuring out the class’s superclass.

(lldb) po [$rdi superclass]

... Keep on going until you find it.

(lldb) po [[$rdi superclass] superclass]

Wait — we’re using Objective-C on a Swift class?! You bet! You’ll discover that a Swift

class is mostly all Objective-C underneath the covers (however the same can’t be said

about Swift structs). You should confirm this is the case in Swift. To do this, first enter

the following:

(lldb) ex -l swift -- import Foundation
(lldb) ex -l swift -- import AppKit

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 31

The ex command (short for expression) lets you evaluate code and is the foundation for

your p/po LLDB commands. -l swift tells LLDB to interpret your commands as Swift

code. What you did is essentially imported to appropriate headers to call methods in

both of these modules through Swift. You’ll need these in the next two commands.

Enter the following, replacing 0x14bdd9b50 with the memory address of your NSView

subclass you found previously:

(lldb) ex -l swift -o -- unsafeBitCast(0x14bdd9b50, to: NSObject.self)
(lldb) ex -l swift -o -- unsafeBitCast(0x14bdd9b50, to: NSObject.self) is
NSView

These commands print out the SourceCodeEditorView instance, and then check if it’s an

NSView subclass — but this time using Swift! You’ll see something similar to below:

(lldb) ex -l swift -o -- unsafeBitCast(0x14bdd9b50, to: NSObject.self)
SourceCodeEditorView: Frame: (0.0, 0.0, 868.0, 524.0), Bounds: (0.0, 0.0,
868.0, 524.0) contentViewOffset: 0.0

(lldb) ex -l swift -o -- unsafeBitCast(0x14bdd9b50, to: NSObject.self) is
NSView
true

Using Swift requires much more typing. In addition, when stopping the debugger out of

the blue, or on Objective-C code, LLDB will default to Objective-C. It’s possible to alter

this, but this book prefers to use Objective-C since the Swift REPL can be brutal for

error-checking in the debugger.

For now, you’ll use the Objective-C debugging context to aid in manipulating this

NSView.

Since this is a subclass of NSView, all the methods of NSView apply. Enter the following:

(lldb) po [$rdi string]

This prints out the contents of whatever file you have open in Xcode.

Now, how can you go about querying potentially overridden, Objective-C bridged

methods on this instance of IDEPegasusSourceEditor.SourceCodeEditorView?

You can use the image lookup command with the regular expression options to search

for all methods of SourceCodeEditorView that begin with the objc bridge and contain

the word "getter". In LLDB, type the ever-so-short command:

(lldb) image lookup -rn
objc\sIDEPegasusSourceEditor.SourceCodeEditorView.*getter

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 32

This will generate a scary amount of output as soon below in the truncated output.

10 matches found in /Applications/Xcode.app/Contents/PlugIns/
IDEPegasusSourceEditor.ideplugin/Contents/MacOS/IDEPegasusSourceEditor:
Address: IDEPegasusSourceEditor[0x00000000000a2020]
(IDEPegasusSourceEditor.__TEXT.__text + 656048)
Summary: IDEPegasusSourceEditor`@objc
IDEPegasusSourceEditor.SourceCodeEditorView.hostingEditor.getter : weak
Swift.Optional<IDEPegasusSourceEditor.SourceCodeEditor> Address:
IDEPegasusSourceEditor[0x00000000000a2c70]
(IDEPegasusSourceEditor.__TEXT.__text + 659200)
Summary: IDEPegasusSourceEditor`@objc
IDEPegasusSourceEditor.SourceCodeEditorView.completionController.getter :
Swift.ImplicitlyUnwrappedOptional<__ObjC.DVTTextCompletionController>
Address: IDEPegasusSourceEditor[0x00000000000a2d00]
(IDEPegasusSourceEditor.__TEXT.__text + 659344)
Summary: IDEPegasusSourceEditor`@objc
IDEPegasusSourceEditor.SourceCodeEditorView.completionsDataSource.getter
: __ObjC.DVTTextCompletionDataSource Address:
IDEPegasusSourceEditor[0x00000000000a2d60]
(IDEPegasusSourceEditor.__TEXT.__text + 659440)

Focus on the content immediately following the Summary: sections. These are the

Objective-C bridging methods which you can apply to Objective-C syntax to. For

example, you can execute the following code:

(lldb) po [$rdi hostingEditor]

Or also:

(lldb) po [$rdi language]

Any Swift you can find that contains @objc in the method signature implies you can use

this via Objective-C. This is a convenient workaround since the

IDEPegasusSourceEditor’s Swift-only code is much more inconvenient to execute in

LLDB.

Executing private Swift methods
That’s all great, but really, how can you execute private Swift methods?

Typically, when LLDB interacts with a codebase, it needs to know all about the module’s

module map (a file that contains the extension .modulemap). It’s this information that

helps you in your typical Swift development, and LLDB needs this information as well to

figure out what code it can and can’t execute. Do you remember import’ing the

Foundation and AppKit module? This allows the Swift LLDB’s code-execution-compiler

(JIT) to interact with the methods within those frameworks through the modulemaps.

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 33

When executing Swift code in LLDB, not having that module map will not let me

execute code that I know exists. This is much different than, say, in Objective-C (or even

just plain C) where the compiler doesn’t try to hold your hand as much.

Jumping back to IDEPegasusSourceEditor module, you don’t have a .modulemap file

which you can import to access Swift code in this framework. This means you need to

creatively figure out the mangled function name for whatever Swift function you want

to access, and then use C’s extern to declare it and execute it.

Let’s go after an Objective-C bridging method that is implemented in Swift that belongs

to the SourceCodeEditorView class. In LLDB, search for a property:

(lldb) image lookup -rvn objc\sSourceEditor.SourceEditorView.insertText\
(Any\)

Remember, you are favoring doing over learning. You’ll spend more than enough time

on the how and why of what’s happening, in the upcoming chapters.

This will dump out the verbose output for the method @objc

SourceEditor.SourceEditorView.insertText(Any). At the bottom of the output is the

mangled Swift name (look for

mangled="_T012SourceEditor0aB4ViewC10insertTextyypFTo"). Copy this value and

externally declare it in LLDB:

(lldb) po extern void _T012SourceEditor0aB4ViewC10insertTextyypFTo(long,
char *,id);

This will tell LLDB that there exists a method named

_T012SourceEditor0aB4ViewC10insertTextyypFTo that takes three parameters. How in

the world did I know this takes three parameters? Check out Section II to gain a better

understanding of assembly, and what happens in Objective-C and Swift when a function

is called. Now that the method has been declared and LLDB knows about it, execute the

following command:

 (lldb) po _T012SourceEditor0aB4ViewC10insertTextyypFTo($rdi,
0,@"wahahahahah")

Let’s see what happened. Resume execution in LLDB:

(lldb) continue

In Xcode’s SourceCodeEditorView instance, find where your cursor is located and scan

for anything that’s different in the code.

You’ll see a new string with wahahahahah in your IDE!

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 34

Now, I know that Objective-C isn’t very popular nowadays https://stackoverflow.blog/
2017/10/31/disliked-programming-languages/, but c’mon, how much easier is it to write
[$rdi insertText:@"wahahahahah"], than to use the method described above?

If I can, I’ll always choose using Objective-C in the debugger because LLDB is much

more stable with Objective-C than it is with Swift. In addition, in Objective-C (as well as

Swift bridging methods for Objective-C), the instance of the class (or class itself) is

always passed first into the function. The same isn’t always true for all Swift functions.

Finally, I don’t have to battle Swift’s type checking and comparatively slow compiler

when executing code in LLDB.

Where to go from here?
This was a breadth-first, whirlwind introduction to using LLDB and attaching to a

process where you don’t have any source code to aid you. This chapter glossed over a lot

of detail, but the goal was to get you right into the debugging/reverse engineering

process. To some, this first chapter might have come off as a little scary, but we’ll slow

down and describe methods in detail from here on out. There are lots of chapters

remaining to get you into the details!

Keep reading to learn the essentials in the remainder of Section 1. Happy debugging!

Advanced Apple Debugging Chapter 1: Getting Started

raywenderlich.com 35

2Chapter 2: Help & Apropos

Just like any respectable developer tool, LLDB ships with a healthy amount of

documentation. Knowing how to navigate through this documentation — including

some of the more obscure command flags — is essential to mastering LLDB.

raywenderlich.com 36

The "help" command
Open a Terminal window and type lldb. The LLDB prompt will appear. From there,

simply type the help command:

(lldb) help

This will dump out all available commands, including the custom commands loaded

from your ~/.lldbinit — but more on that later.

There's quite a few commands one can use with LLDB.

However, many commands have numerous subcommands, which in turn can have

subcommands, which also have their own associated documentation. I told you it was a

healthy amount of documentation!

Take the breakpoint command for instance. Run the documentation for breakpoint by

typing the following:

(lldb) help breakpoint

You’ll see the following output:

 Commands for operating on breakpoints (see 'help b' for shorthand.)

Syntax: breakpoint

The following subcommands are supported:

 clear -- Delete or disable breakpoints matching the specified

Advanced Apple Debugging Chapter 2: Help & Apropos

raywenderlich.com 37

 source file and line.
 command -- Commands for adding, removing and listing LLDB commands
 executed when a breakpoint is hit.
 delete -- Delete the specified breakpoint(s). If no breakpoints are
 specified, delete them all.
 disable -- Disable the specified breakpoint(s) without deleting them.
 If none are specified, disable all breakpoints.
 enable -- Enable the specified disabled breakpoint(s). If no
 breakpoints are specified, enable all of them.
 list -- List some or all breakpoints at configurable levels of
 detail.
 modify -- Modify the options on a breakpoint or set of breakpoints
 in the executable. If no breakpoint is specified, acts on
 the last created breakpoint. With the exception of -e, -d
 and -i, passing an empty argument clears the modification.
 name -- Commands to manage name tags for breakpoints
 read -- Read and set the breakpoints previously saved to a file
 with "breakpoint write".
 set -- Sets a breakpoint or set of breakpoints in the executable.
 write -- Write the breakpoints listed to a file that can be read in
 with "breakpoint read". If given no arguments, writes all
 breakpoints.

For more help on any particular subcommand, type 'help <command>
<subcommand>'.

From there, you can see several supported subcommands. Look up the documentation

for breakpoint name by typing the following:

(lldb) help breakpoint name

You’ll see the following output:

 Commands to manage name tags for breakpoints

Syntax: breakpoint name

The following subcommands are supported:

 add -- Add a name to the breakpoints provided.
 delete -- Delete a name from the breakpoints provided.
 list -- List either the names for a breakpoint or the breakpoints
for a given name.

For more help on any particular subcommand, type 'help <command>
<subcommand>'.

If you don’t understand breakpoint name at the moment, don’t worry — you’ll become

familiar with breakpoints and all of the subsequent commands soon. For now, the help

command is the most important command you can remember.

Advanced Apple Debugging Chapter 2: Help & Apropos

raywenderlich.com 38

The "apropos" command
Sometimes you don’t know the name of the command you’re searching for, but you

know a certain word or phrase that might point you in the right direction. The apropos

command can do this for you; it’s a bit like using a search engine to find something on

the web.

apropos will do a case-insensitive search for any word or string against the LLDB

documentation and return any matching results. For example, try searching for

anything pertaining to Swift:

(lldb) apropos swift

You’ll see the following output:

The following commands may relate to 'swift':
 swift -- A set of commands for operating on the Swift Language
Runtime.
 demangle -- Demangle a Swift mangled name
 refcount -- Inspect the reference count data for a Swift object

The following settings variables may relate to 'swift':

 target.swift-framework-search-paths -- List of directories to be
searched when locating frameworks for Swift.
 target.swift-module-search-paths -- List of directories to be searched
when locating modules for Swift.
 target.use-all-compiler-flags -- Try to use compiler flags for all
modules when setting up the Swift expression parser, not just the main
executable.

This dumped everything that might pertain to the word Swift: first the commands, and

then the LLDB settings which can be used to control how LLDB operates.

You can also use apropos to search for a particular sentence. For example, if you were

searching for something that can help with reference counting, you might try the

following:

(lldb) apropos "reference count"
The following commands may relate to 'reference count':
 refcount -- Inspect the reference count data for a Swift object

Notice the quotes surrounding the words "reference count". apropos will only accept

one argument to search for, so the quotes are necessary to treat the input as a single

argument.

Advanced Apple Debugging Chapter 2: Help & Apropos

raywenderlich.com 39

Isn’t that neat? apropos is a handy tool for querying. It’s not quite as sophisticated as

modern internet search engines; however, with some playing around, you can usually

find what you’re looking for.

Where to go from here?
It’s easy to forget the onslaught of LLDB commands that will soon come, but try to

commit these two commands, help and apropos, to heart. They’re the foundation for

querying information on commands and you’ll be using them all the time as you master

debugging.

Advanced Apple Debugging Chapter 2: Help & Apropos

raywenderlich.com 40

3
Chapter 3: Attaching with
LLDB

Now that you’ve learned about the two most essential commands, help and apropos, it’s

time to investigate how LLDB attaches itself to processes. You’ll learn all the different

ways you can attach LLDB to processes using various options, as well as what happens

behind the scenes when attaching to processes.

The phrase of LLDB “attaching” is actually a bit misleading. A program named

debugserver (found in Xcode.app/Contents/SharedFrameworks/LLDB.framework/

Resources/) is responsible for attaching to a target process.

If it’s a remote process, such as an iOS, watchOS or tvOS application running on a

remote device, a remote debugserver gets launched on that remote device. It’s LLDB’s

job to launch, connect, and coordinate with the debugserver to handle all the

interactions in debugging an application.

raywenderlich.com 41

Attaching to an existing process
As you’ve already seen in Chapter 1, you can attach to a process like so:

lldb -n Xcode

However, there's other ways to do the same thing. You can attach to Xcode by providing

the process identifier, or PID, of a running program.

Open Xcode, then open a new Terminal session, and finally run the following:

pgrep -x Xcode

This will output the PID of the Xcode process.

Next, run the following, replacing 89944 with the number output from the command

above:

lldb -p 89944

This tells LLDB to attach to the process with the given PID. In this case, this is your

running Xcode process.

Attaching to a future process
The previous command only addresses a running process. If Xcode isn’t running, or is

already attached to a debugger, the previous commands will fail. How can you catch a

process that's about to be launched, if you don’t know the PID yet?

You can do that with the -w argument, which causes LLDB to wait until a process

launches with a PID or executable name matching the criteria supplied using the -p or -

n argument.

For example, kill your existing LLDB session by pressing Ctrl + D in your Terminal

window then type the following:

lldb -n Finder -w

This will tell LLDB to attach to the process named Finder whenever it next launches.

Next, open a new Terminal tab, and enter the following:

pkill Finder

This will kill the Finder process and force it to restart. macOS will automatically

relaunch Finder when it’s killed. Switch back to your first Terminal tab and you’ll notice

LLDB has now attached itself to the newly created Finder process.

Advanced Apple Debugging Chapter 3: Attaching with LLDB

raywenderlich.com 42

Another way to attach to a process is to specify the path to the executable and manually

launch the process at your convenience:

lldb -f /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder

This will set Finder as the executable to launch. Once you’re ready to begin the debug

session, simply type the following into the LLDB session:

(lldb) process launch

Note: An interesting side effect is that stderr output (i.e. NSLog & company) are
automatically sent to the Terminal window when manually launching a process.
Other LLDB attaching configurations don’t do this automatically.

Options while launching
The process launch command comes with a suite of options worth further exploration.

If you’re curious and want to see the full list of available options for process launch,

simply type help process launch.

Close previous LLDB sessions, open a new Terminal window and type the following:

lldb -f /bin/ls

This tells LLDB to use /bin/ls (the file listing command) as the target executable.

Note: If you omit the -f option, LLDB will automatically infer the first argument
to be the executable to launch and debug. When debugging Terminal executables,
I'll oftentimes type lldb $(which ls) (or equivalent), which then gets translated
to lldb /bin/ls.

You’ll see the following output:

(lldb) target create "/bin/ls"
Current executable set to '/bin/ls' (x86_64).

Since ls is a quick program (it launches, does its job, then exits) you’ll run this program

multiple times with different arguments to explore what each does.

To launch ls from LLDB with no arguments. Enter the following:

(lldb) process launch

Advanced Apple Debugging Chapter 3: Attaching with LLDB

raywenderlich.com 43

You’ll see the following output:

Process 7681 launched: '/bin/ls' (x86_64)
... # Omitted directory listing output
Process 7681 exited with status = 0 (0x00000000)

An ls process will launch in the directory you started in. You can change the current

working directory by telling LLDB where to launch with the -w option. Enter the

following:

(lldb) process launch -w /Applications

This will launch ls from within the /Applications directory. This is equivalent to the

following:

$ cd /Applications
$ ls

There’s yet another way to do this. Instead of telling LLDB to change to a directory then

run the program, you can pass arguments to the program directly.

Try the following:

(lldb) process launch -- /Applications

This has the same effect as the previous command, but this time it’s doing the

following:

$ ls /Applications

Again, this spits out all your macOS programs, but you specified an argument instead of

changing the starting directory. What about specifying your desktop directory as a

launch argument? Try running this:

(lldb) process launch -- ~/Desktop

You’ll see the following:

Process 8103 launched: '/bin/ls' (x86_64)
ls: ~/Desktop: No such file or directory
Process 8103 exited with status = 1 (0x00000001)

Uh-oh, that didn’t work. You need the shell to expand the tilde in the argument. Try this

instead:

(lldb) process launch -X true -- ~/Desktop

Advanced Apple Debugging Chapter 3: Attaching with LLDB

raywenderlich.com 44

The -X option expands any shell arguments you provide, such as the tilde. There’s a

shortcut in LLDB for this: simply type run. To learn more about creating your own

command shortcuts, check out Chapter 8, “Persisting and Customizing Commands”.

Type the following to see the documentation for run:

(lldb) help run

You’ll see the following:

...
Command Options Usage:
 run [<run-args>]

'run' is an abbreviation for 'process launch -X true --'

See? It’s an abbreviation of the command you just ran! Give the command a go by

typing the following:

(lldb) run ~/Desktop

What about changing console output to a different location? You’ve already tried

changing stderr to a different Terminal tab in Chapter 1 using the -e flag, but how

about stdout?

Type the following:

(lldb) process launch -o /tmp/ls_output.txt -- /Applications

The -o option tells LLDB to pipe stdout to the given file.

You’ll see the following output:

Process 15194 launched: '/bin/ls' (x86_64)
Process 15194 exited with status = 0 (0x00000000)

Notice there’s no output directly from ls.

Open another Terminal tab and run the following:

cat /tmp/ls_output.txt

It’s your applications directory output again, as expected!

There is also an option -i for stdin as well. First, type the following:

(lldb) target delete

Advanced Apple Debugging Chapter 3: Attaching with LLDB

raywenderlich.com 45

This removes ls as the target. Next, type this:

(lldb) target create /usr/bin/wc

This sets /usr/bin/wc as the new target. wc can be used to count characters, words or

lines in the input given to stdin.

You’ve swapped target executables for your LLDB session from ls to wc. Now you need

some data to provide to wc. Open a new Terminal tab and enter the following:

echo "hello world" > /tmp/wc_input.txt

You’ll use this file to give wc some input.

Switch back to the LLDB session and enter the following:

(lldb) process launch -i /tmp/wc_input.txt

You’ll see the following output:

Process 24511 launched: '/usr/bin/wc' (x86_64)
 1 2 12
Process 24511 exited with status = 0 (0x00000000)

This would be functionally equivalent to the following:

$ wc < /tmp/wc_input.txt

Sometimes you don’t want a stdin (standard input). This is useful for GUI programs

such as Xcode, but doesn’t really help for Terminal commands such as ls and wc.

To illustrate, run the wc target with no arguments, like so:

(lldb) run

The program will just sit there and hang because it’s expecting to read something from

stdin.

Give it some input by typing in hello world, press Return, then press Control + D,

which is the end of transmission character. wc will parse the input and exit. You’ll see

the same output as you did earlier when using the file as the input.

Now, launch the process like this:

(lldb) process launch -n

Advanced Apple Debugging Chapter 3: Attaching with LLDB

raywenderlich.com 46

You’ll see that wc exits immediately with the following output:

Process 28849 launched: '/usr/bin/wc' (x86_64)
Process 28849 exited with status = 0 (0x00000000)

The -n option tells LLDB not to create a stdin; therefore wc has no data to work with

and exits immediately.

Where to go from here?
There are a few more interesting options to play with (which you can find via the help

command), but that's for you to explore on your own time.

For now, try attaching to GUI and non-GUI programs alike. It might seem like you can't

understand much without the source code, but you'll find out in the upcoming sections

how much information and control you have over these programs.

Advanced Apple Debugging Chapter 3: Attaching with LLDB

raywenderlich.com 47

4Chapter 4: Stopping in Code

Whether you’re using Swift, Objective-C, C++, C, or an entirely different language in

your technology stack, you’ll need to learn how to create breakpoints. It’s easy to click

on the side panel in Xcode to create a breakpoint using the GUI, but the LLDB console

can give you much more control over breakpoints.

In this chapter, you’re going to learn all about breakpoints and how to create them

using LLDB.

raywenderlich.com 48

Signals
For this chapter, you’ll be looking at a project I’ve supplied; it’s called Signals and

you’ll find it in the resources bundle for this chapter.

Open up the Signals project using Xcode. Signals is a basic master-detail project

themed as an American football app that displays some rather nerdily-named offensive

play calls.

Internally, this project montors several Unix signals and displays them when the

Signals program receives them.

Unix signals are a basic form of interprocess communication. For example, one of the

signals, SIGSTOP, can be used to save the state and pause execution of a process, while

its counterpart, SIGCONT, is sent to a program to resume execution. Both of these signals

can be used by a debugger to pause and continue a program’s execution.

This is an interesting application on several fronts, because it not only explores Unix
signal handling, but also highlights what happens when a controlling process (LLDB)
handles the passing of Unix signals to the controlled process. By default, LLDB has

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 49

custom actions for handling different signals. Some signals are not passed onto the
controlled process while LLDB is attached.

In order to display a signal, you can either raise a Signal from within the application,

or send a signal externally from a different application, like Terminal.

In addition, there’s a UISwitch that toggles the signal handling. When the switch is

toggled, it calls a C function sigprocmask to disable or enable the signal handlers.

Finally, the Signal application has a Timeout bar button which raises the SIGSTOP

signal from within the application, essentially “freezing” the program. However, if LLDB

is attached to the Signals program (and by default it will be, when you build and run

through Xcode), calling SIGSTOP will allow you to inspect the execution state with LLDB

while in Xcode.

Make sure the iPhone X Simulator is selected as the target. Build and run the app.

Once the project is running, navigate to the Xcode console and pause the debugger.

Resume Xcode and keep an eye on the Simulator. A new row will be added to the

UITableView whenever the debugger stops then resumes execution. This is achieved by

Signals monitoring the SIGSTOP Unix signal event and adding a row to the data model

whenever it occurs. When a process is stopped, any new signals will not be immediately

processed because the program is sort of, well, stopped.

Xcode breakpoints
Before you go off learning the cool, shiny breakpoints through the LLDB console, it’s

worth covering what you can achieve through Xcode alone.

Symbolic breakpoints are a great debugging feature of Xcode. They let you set a

breakpoint on a certain symbol within your application. An example of a symbol is -

[NSObject init], which refers to the init method of NSObject instances.

The neat thing about symbolic breakpoints in Xcode is that once you enter a symbolic

breakpoint, you don’t have to type it in again the next time the program launches.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 50

You’re now going to try using a symbolic breakpoint to show all the instances of
NSObject being created.

Kill the app if it’s currently running. Next, switch to the Breakpoint Navigator. In the

bottom left, click the plus button to select the Symbolic Breakpoint... option.

A popup will appear. In the Symbol part of the popup type: -[NSObject init]. Under

Action, select Add Action and then select Debugger Command from the dropdown.

Next, enter po [$arg1 class] in the box below.

Finally, select Automatically continue after evaluating actions. Your popup should

look similar to below:

Build and run the app. Xcode will dump all the names of the classes it initializes while

running the Signals program through the console... which, upon viewing, is quite a lot.

What you’ve done here is set a breakpoint that fires each time -[NSObject init] is

called. When the breakpoint fires, a command runs in LLDB, and execution of the

program continues automatically.

Note: You’ll learn how to properly use and manipulate registers in Chapter 10,
“Assembly, Registers and Calling Convention”, but for now, simply know $arg1 is

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 51

synonymous to the $rdi register and can be loosely thought of as holding the
instance of a class when init is called.

Once you’ve finished inspecting all the class names dumped out, delete the symbolic

breakpoint by right-clicking the breakpoint in the breakpoint navigator and selecting

Delete Breakpoint.

In addition to symbolic breakpoints, Xcode also supports several types of error

breakpoints. One of these is the Exception Breakpoint. Sometimes, something goes

wrong in your program and it just simply crashes. When this happens, your first

reaction to this should be to enable an exception breakpoint, which will fire every time

an exception is thrown. Xcode will show you the offending line, which greatly aids in

hunting down the culprit responsible for the crash.

Finally, there is the Swift Error Breakpoint, which stops any time Swift throws an

error by essentially creating a breakpoint on the swift_willThrow method. This is a

great option to use if you’re working with any APIs that can be error-prone, as it lets

you diagnose the situation quickly without making false assumptions about the

correctness of your code.

LLDB breakpoint syntax
Now that you’ve had a crash course in using the IDE debugging features of Xcode, it’s

time to learn how to create breakpoints through the LLDB console. In order to create

useful breakpoints, you need to learn how to query what you’re looking for.

The image command is an excellent tool to help introspect details that will be vital for

setting breakpoints.

There are two configurations you’ll use in this book for code hunting. The first is the

following:

(lldb) image lookup -n "-[UIViewController viewDidLoad]"

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 52

This command dumps the implementation address (the offset address of where this

method is located within the framework's binary) of the function for -

[UIViewController viewDidLoad]. The -n argument tells LLDB to look up either a

symbol or function name. The output will be similar to below:

1 match found in /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk//System/
Library/Frameworks/UIKit.framework/UIKit:
 Address: UIKit[0x00000000001c67c8] (UIKit.__TEXT.__text +
1854120)
 Summary: UIKit`-[UIViewController viewDidLoad]

Another useful, similar command is this:

(lldb) image lookup -rn test

This does a case-sensitive regex lookup for the word "test". If the lowercase word

"test" is found anywhere, in any function, in any of the modules (i.e. UIKit,

Foundation, Core Data, etc) loaded in the current executable (that are not stripped out

of a release builds... more on that later), this command will spit out the results.

Note: Use the -n argument when you want exact matches (with quotes around
your query if it contains spaces) and use the -rn arguments to do a regex search.
The -n only command helps figure out the exact parameters to match a
breakpoint, especially when dealing with Swift, while the -rn argument option will
be heavily favored in this book since a smart regex can eliminate quite a bit of
typing — as you’ll soon find out.

Objective-C properties
Learning how to query loaded code is essential for learning how to create breakpoints

on that code. Both Objective-C and Swift have specific property signatures when they’re

created by the compiler, which results in different querying strategies when looking for

code.

For example, the following Objective-C class is declared in the Signals project:

@interface TestClass : NSObject
@property (nonatomic, strong) NSString *name;
@end

The compiler will generate code for both the setter and getter of the property name. The

getter will look like the following:

-[TestClass name]

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 53

...while the setter would look like this:

-[TestClass setName:]

Build and run the app, then pause the debugger. Next, verify these methods do exist by

typing the following into LLDB:

(lldb) image lookup -n "-[TestClass name]"

In the console output, you’ll get something similar to below:

1 match found in /Users/derekselander/Library/Developer/Xcode/
DerivedData/Signals-atqcdyprrotlrvdanihoufkwzyqh/Build/Products/Debug-
iphonesimulator/Signals.app/Signals:
 Address: Signals[0x0000000100001d60] (Signals.__TEXT.__text + 0)
 Summary: Signals`-[TestClass name] at TestClass.h:28

LLDB will dump information about the function included in the executable. The output

may look scary, but there are some good tidbits here.

Note: The image lookup command can produce a lot of output that can be pretty
hard on the eyes when a query matches a lot of code. In Chapter 22, "SB Examples,
Improved Lookup", you'll build a cleaner alternative to LLDB's image lookup
command to save your eyes from looking at too much output.

The console output tells you LLDB was able to find out this function was implemented

in the Signals executable, at an offset of 0x0000000100001d60 in the __TEXT segment of

the __text section to be exact. LLDB was also able to tell that this method was declared

on line 28 in TestClass.h.

You can check for the setter as well, like so:

(lldb) image lookup -n "-[TestClass setName:]"

You’ll get output similar to the previous command, this time showing the

implementation address and of the setter’s declaration for name.

Objective-C properties and dot notation
Something that is often misleading to beginning Objective-C (or Swift only) developers

is the Objective-C dot notation syntax for properties.

Objective-C dot notation is a somewhat controversial compiler feature that allows

properties to use a shorthand getter or setter.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 54

Consider the following:

TestClass *a = [[TestClass alloc] init];

// Both equivalent for setters
[a setName:@"hello, world"];
a.name = @"hello, world";

// Both equivalent for getters
NSString *b;
b = [a name]; // b = @"hello, world"
b = a.name; // b = @"hello, world"

In the above example, the -[TestClass setName:] method is called twice, even with the

dot notation. The same can be said for the getter, -[TestClass name]. This is important

to know if you're dealing with Objective-C code and trying to create breakpoints on the

setters and getters of properties with dot notation.

Swift properties
The syntax for a property is much different in Swift. Take a look at the code in

SwiftTestClass.swift which contains the following:

class SwiftTestClass: NSObject {
 var name: String!
}

Make sure the Signals project is running and paused in LLDB. Feel free to clear the

LLDB console by typing Command + K in the debug window to start fresh.

In the LLDB console, type the following:

(lldb) image lookup -rn Signals.SwiftTestClass.name.setter

You’ll get output similar to below:

1 match found in /Users/derekselander/Library/Developer/Xcode/
DerivedData/Signals-atqcdyprrotlrvdanihoufkwzyqh/Build/Products/Debug-
iphonesimulator/Signals.app/Signals:
 Address: Signals[0x000000010000cc70] (Signals.__TEXT.__text +
44816)
 Summary: Signals`Signals.SwiftTestClass.name.setter :
Swift.ImplicitlyUnwrappedOptional<Swift.String> at SwiftTestClass.swift:
28

Hunt for the information after the word Summary in the output. There are a couple of

interesting things to note here.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 55

Do you see how long the function name is!? This whole thing needs to be typed out for

one valid Swift breakpoint! If you wanted to set a breakpoint on this setter, you’d have

to type the following:

(lldb) b Signals.SwiftTestClass.name.setter :
Swift.ImplicitlyUnwrappedOptional<Swift.String>

Using regular expressions is an attractive alternative to typing out this monstrosity.

Apart from the length of the Swift function name you produced, note how the Swift

property is formed. The function signature containing the property name has the word

setter immediately following the property. Perhaps the same convention works for the

getter method as well?

Search for the SwiftTestClass setter and getter for the name property, at the same time,

using the following regular expression query:

(lldb) image lookup -rn Signals.SwiftTestClass.name

This uses a regex query to dump everything that contains the phrase

Signals.SwiftTestClass.name.

Since this is a regular expression, the periods (.) are evaluated as wildcards, which in

turn matches periods in the actual function signatures.

You’ll get a fair bit of output, but hone in every time you see the word Summary in the

console ouput. You’ll find the output matches the getter,

(Signals.SwiftTestClass.name.getter) the setter,

(Signals.SwiftTestClass.name.setter), as well as two methods containing

materializeForSet, helper methods for Swift constructors.

There’s a pattern for the function names for Swift properties:

ModuleName.Classname.PropertyName.(getter|setter)

The ability to dump methods, find a pattern, and narrow your search scope is a great

way to uncover the Swift/Objective-C language internals as you work to create smart

breakpoints in your code.

Finally... creating breakpoints
Now you know how to query the existence of functions and methods in your code, it’s

time to start creating breakpoints on them.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 56

If you already have the Signals app running, stop and restart the application, then press

the pause button to stop the application and bring up the LLDB console.

There are several different ways to create breakpoints. The most basic way is to simply

type the letter b followed by the name of your breakpoint. This is fairly easy in

Objective-C and C, since the names are short and easy to type (e.g. -[NSObject init] or

-[UIView setAlpha:]). They’re quite tricky to type in C++ and Swift, since the compiler

turns your methods into symbols with rather long names.

Since UIKit is primarily Objective-C (at the time of this writing at least!), create a

breakpoint using the b argument, like so:

(lldb) b -[UIViewController viewDidLoad]

You’ll see the following output:

Breakpoint 1: where = UIKit`-[UIViewController viewDidLoad], address =
0x0000000102bbd788

When you create a valid breakpoint, the console will spit out some information about

that breakpoint. In this particular case, the breakpoint was created as Breakpoint 1

since this was the first breakpoint in this particular debugging session. As you create

more breakpoints, this breakpoint ID will increment.

Resume the debugger. Once you’ve resumed execution, a new SIGSTOP signal will be

displayed. Tap on the cell to bring up the detail UIViewController. The program should

pause when viewDidLoad of the detail view controller is called.

Note: Like a lot of shorthand commands, b is an abbreviation for another, longer
LLDB command. Try running help with the b command to figure out the actual
command yourself and learn all the cool tricks b can do under the hood.

In addition to the b command, there’s another longer breakpoint set command, which

has a slew of options available. You’ll explore these options over the next couple of

sections. Many of the commands will stem from various options of the breakpoint set

command.

Regex breakpoints and scope
Another extremely powerful command is the regular expression breakpoint, rbreak,

which is an abbreviation for breakpoint set -r %1. You can quickly create many

breakpoints using smart regular expressions to stop wherever you want.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 57

Going back to the previous example with the egregiously long Swift property function
names, instead of typing:

(lldb) b Breakpoints.SwiftTestClass.name.setter :
Swift.ImplicitlyUnwrappedOptional<Swift.String>

You can simply type:

(lldb) rb SwiftTestClass.name.setter

The rb command will get expanded out to rbreak (provided you don't have any other

LLDB commands that begin with "rb"). This will create a breakpoint on the setter

property of name in SwiftTestClass

To be even more brief, you could simply use the following:

(lldb) rb name\.setter

This will produce a breakpoint on anything that contains the phrase name.setter. This

will work if you know you don’t have any other Swift properties called name within your

project; otherwise you’ll create multiple breakpoints for each class that contains a

"name" property that has a setter.

Let's up the complexity of these regular expressions.

Create a breakpoint on every Objective-C instance method of UIViewController. Type

the following into your LLDB session:

(lldb) rb '\-\[UIViewController\ '

The ugly back slashes are escape characters to indicate you want the literal character to

be in the regular expression search. As a result, this query breaks on every method

containing the string -[UIViewController followed by a space.

But wait... what about Objective-C categories? They take on the form of (-|+)

[ClassName(categoryName) method]. You’ll have to rewrite the regular expression to

include categories as well.

Type the following into your LLDB session and when prompted type y to confirm:

(lldb) breakpoint delete

This command deletes all the breakpoints you have set.

Next, type the following:

(lldb) rb '\-\[UIViewController(\(\w+\))?\ '

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 58

This provides an optional parenthesis with one or more alphanumeric characters
followed by a space, after UIViewController in the breakpoint.

Regex breakpoints let you capture a wide variety of breakpoints with a single

expression.

You can limit the scope of your breakpoints to a certain file, using the -f option. For

example, you could type the following:

(lldb) rb . -f DetailViewController.swift

This would be useful if you were debugging DetailViewController.swift. It would set a

breakpoint on all the property getters/setters, blocks/closures, extensions/categories,

and functions/methods in this file. -f is known as a scope limitation.

If you were completely crazy and a fan of pain (the doctors call that masochistic?), you

could omit the scope limitation and simply do this:

(lldb) rb .

This will create a breakpoint on everything... Yes, everything! This will create

breakpoints on all the code in the Signals project, all the code in UIKit as well as

Foundation, all the event run loop code that gets fired at (hopefully) 60 hertz —

everything. As a result, expect to type continue in the debugger a fair bit if you execute

this.

There are other ways to limit the scope of your searches. You can limit to a single

library using the -s option:

(lldb) rb . -s Commons

This would set a breakpoint on everything within the Commons library, which is a

dynamic library contained within the Signals project.

This is not limited to your code; you can use the same tactic to create a breakpoint on

every function in UIKit, like so:

(lldb) rb . -s UIKit

Even that is still a little crazy. There are a lot of methods — around 86,577 UIKit

methods in iOS 11.0. How about only stopping on the first method in UIKit you hit, and

simply continue? The -o option offers a solution for this. It creates what is known as a

“one-shot” breakpoint. When these breakpoints hit, the breakpoint is deleted. So it’ll

only ever hit once.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 59

To see this in action, type the following in your LLDB session:

(lldb) breakpoint delete
(lldb) rb . -s UIKit -o

Note: Be patient while your computer executes this command, as LLDB has to
create a lot of breakpoints. Also make sure you are using the Simulator, or else
you’ll wait for a very long time!

Next, continue the debugger, and click on a cell in the table view. The debugger stops

on the first UIKit method this action calls. Finally, continue the debugger, and the

breakpoint will no longer fire.

Other cool breakpoint options
The -L option lets you filter by source language. So, if you wanted to only go after Swift

code in the Commons module of the Signals application, you could do the following:

(lldb) breakpoint set -L swift -r . -s Commons

This would set a breakpoint on every Swift method within the Commons module.

What if you wanted to go after something interesting around a Swift if let but totally

forgot where in your application it is? You can use source regex breakpoints to help

figure locations of interest! Like so:

(lldb) breakpoint set -A -p "if let"

This will create a breakpoint on every source code location that contains if let. You

can of course get waaaaaay more fancy since the -p takes a regular expression

breakpoint to go after complicated expressions. The -A option says to search in all

source files known to the project.

If you wanted to filter the above breakpoint query to only MasterViewController.swift

and DetailViewController.swift, you could do the following:

(lldb) breakpoint set -p "if let" -f MasterViewController.swift -f
DetailViewController.swift

Notice how the -A has gone, and how each -f will let you specify a filename. I am lazy,

so I'll usually default to -A to give me all files and drill in from there.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 60

Finally, you can also filter by a specific module as well. If you wanted to create a

breakpoint for "if let" for anything in the Signals executable (while ignoring other

frameworks like Commons), you could do this:

(lldb) breakpoint set -p "if let" -s Signals -A

This will grab all source files (-A), but filter those to only the ones that belong to the

Signals executable (with the -s Signals option).

One more cool breakpoint option example? OK, you talked me into it. Let's ramp up the

complexity a little bit and make an “advanced” breakpoint.

What if you wanted to set a breakpoint on -[UIView setTintColor:] but only stop if

the method was called from code implemented inside the Signals executable?

There's several ways to accomplish this, but here's a creative way to do this using

breakpoint conditions, or the -c option.

First, you need to figure out the upper and lower bounds of where the code in the

Signals executable resides in memory. Typically, code is located in the __text section of

the __TEXT segment. Don't worry about the specifics of what this means for now, we'll

get into the gory details of the Mach-O file format in a later chapter. For now, just think

of the __TEXT segment as a grouping of readable and executable code that every

executable and framework has.

You can use LLDB to dump the contents of the Mach-O segments and sections in the

Signals executable with the following LLDB command:

(lldb) image dump sections Signals

Grab the upper and lower bounds of the __TEXT segment because the actual executable

code will reside in these address bounds.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 61

For my case, this address range begins at 0x0000000108056000 and ends at

0x0000000108067000 (yours will be different). Therefore, I can use the following

breakpoint to only stop if -[UIView setTintColor:] is called from any code in the

Signals executable.

(lldb) breakpoint set -n "-[UIView setTintColor:]" -c "*(uintptr_t*)$rsp
<= 0x0000000108067000 && *(uintptr_t*)$rsp >= 0x0000000108056000"

This is using knowledge of the x86_64 calling convention (this will only work in 64-bit

iOS Simulators) with how the stack pointer register works when a function gets called.

We won't get into the details of how this works yet, but a quick summary is that in

x86_64 assembly, right after a function gets called, the stack pointer will contain a

pointer to the return address to where the function was called. You'll take an

uncomfortably deep dive into the stack pointer register and base pointer register in

Chapter 12, “Assembly and the Stack”.

There's one final thing you must do for this breakpoint strategy to work. Typically, if

you create a breakpoint, LLDB will skip a couple of assembly instructions in the

beginning of a function that helps set up the logic (known as the function prologue).

When this happens, the head of the stack pointer will no longer contain a pointer to the

return address (the head will point to something new). This means you need to tell

LLDB to stop right at the beginning before those setup assembly instructions occur.

You can do this with the following command:

(lldb) settings set target.skip-prologue false

In a later chapter, I'll make you save this setting into the LLDB initialization file

(~/.lldbinit) since it's rather useful for exploring parameters passed into a function. If

none of this makes any sense at the moment, don’t worry — you’ll get there!

Modifying and removing breakpoints
Now that you have a basic understanding of how to create these breakpoints, you might

be wondering how you can alter them. What if you found the object you were interested

in and wanted to delete the breakpoint, or temporarily disable it? What if you need to

modify the breakpoint to perform a specific action next time it triggers?

First, you’ll need to discover how to uniquely identify a breakpoint or a group of

breakpoints. You can also name breakpoints when you create then using the -N option...

if working with numbers is not really your thing.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 62

Build and run the app to get a clean LLDB session. Next, pause the debugger and type

the following into the LLDB session:

(lldb) b main

The output will look something like this:

Breakpoint 1: 70 locations.

This creates a breakpoint with 70 locations, matching the function "main" in various

modules.

In this case, the breakpoint ID is 1, because it’s the first breakpoint you created in this

session. To see details about this breakpoint you can use the breakpoint list

subcommand. Type the following:

(lldb) breakpoint list 1

The output will look similar to the truncated output below:

1: name = 'main', locations = 70, resolved = 70, hit count = 0
 1.1: where = Signals`main at AppDelegate.swift, address =
0x00000001098b1520, resolved, hit count = 0
 1.2: where = Foundation`-[NSThread main], address = 0x0000000109bfa9e3,
resolved, hit count = 0
 1.3: where = Foundation`-[NSBlockOperation main], address =
0x0000000109c077d6, resolved, hit count = 0
 1.4: where = Foundation`-[NSFilesystemItemRemoveOperation main],
address = 0x0000000109c40e99, resolved, hit count = 0
 1.5: where = Foundation`-[NSFilesystemItemMoveOperation main], address
= 0x0000000109c419ee, resolved, hit count = 0
 1.6: where = Foundation`-[NSInvocationOperation main], address =
0x0000000109c6aee4, resolved, hit count = 0
 1.7: where = Foundation`-[NSDirectoryTraversalOperation main], address
= 0x0000000109caefa6, resolved, hit count = 0
 1.8: where = Foundation`-[NSOperation main], address =
0x0000000109cfd5e3, resolved, hit count = 0
 1.9: where = Foundation`-
[_NSFileAccessAsynchronousProcessAssertionOperation main], address =
0x0000000109d55ca9, resolved, hit count = 0
 1.10: where = UIKit`-[_UIFocusFastScrollingTest main], address =
0x000000010b216598, resolved, hit count = 0
 1.11: where = UIKit`-[UIStatusBarServerThread main], address =
0x000000010b651e97, resolved, hit count = 0
 1.12: where = UIKit`-[_UIDocumentActivityDownloadOperation main],
address = 0x000000010b74f718, resolved, hit count = 0

This shows the details of that breakpoint, including all locations that include the word

"main".

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 63

A cleaner way to view this is to type the following:

(lldb) breakpoint list 1 -b

This will give you output that is a little easier on the visual senses. If you have a

breakpoint ID that encapsulates a lot of breakpoints, this brief flag is a good solution.

If you want to query all the breakpoints in your LLDB session, simply omit the ID like

so:

(lldb) breakpoint list

You can also specify multiple breakpoint IDs and ranges:

(lldb) breakpoint list 1 3
(lldb) breakpoint list 1-3

Using breakpoint delete to delete all breakpoints is a bit heavy-handed. You can

simply use the same ID pattern used in the breakpoint list command to delete a set.

You can delete a single breakpoint by specifying the ID like so:

(lldb) breakpoint delete 1

However, your breakpoint for "main" had 70 locations (maybe more or less depending

on the iOS version). You can also delete a single location, like so:

(lldb) breakpoint delete 1.1

This would delete the first sub-breakpoint of breakpoint 1, which results in only one

main function breakpoint removed while keeping the remaining main breakpoints

active.

Where to go from here?
You’ve covered a lot in this chapter. Breakpoints are a big topic and mastering the art of

quickly finding an item of interest is essential to becoming a debugging expert. You’ve

also started exploring function searching using regular expressions. Now would be a

great time to brush up on regular expression syntax, as you’ll be using lots of regular

expressions in the rest of this book.

Check out https://docs.python.org/2/library/re.html to learn (or relearn) regular

expressions. Try figuring out how to make a case-insensitive breakpoint query.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 64

You’ve only begun to discover how the compiler generates functions in Objective-C and

Swift. Try to figure out the syntax for stopping on Objective-C blocks or Swift closures.

Once you’ve done that, try to design a breakpoint that only stops on Objective-C blocks

within the Commons framework of the Signals project. These are regex skills you’ll

need in the future to construct ever more complicated breakpoints.

Advanced Apple Debugging Chapter 4: Stopping in Code

raywenderlich.com 65

5Chapter 5: Expression

Now that you’ve learned how to set breakpoints so the debugger will stop in your code,

it’s time to get useful information out of whatever software you’re debugging.

You’ll often want to inspect instance variables of objects. But, did you know you can

even execute arbitrary code through LLDB? What’s more, by using the Objective-C

runtime you can declare, initialize, and inject code all on the fly to help aid in your

understanding of the program.

In this chapter you’ll learn about the expression command. This allows you to execute

arbitrary code in the debugger.

raywenderlich.com 66

Formatting p & po
You might be familiar with the go-to debugging command, po. po is often used in Swift

& Objective-C code to print out an item of interest. This could be an instance variable

in an object, a local reference to an object, or a register, as you’ve seen earlier in this

book. It could even be an arbitrary memory reference — so long as there’s an object at

that address!

If you do a quick help po in the LLDB console, you’ll find po is actually a shorthand

expression for expression -O --. The -O arugment is used to print the object’s

description.

po’s often overlooked sibling, p, is another abbreviation with the -O option omitted,

resulting in expression --. The format of what p will print out is more dependent on

the LLDB type system. LLDB’s type formatting of values helps determine its output

and is fully customizable (as you’ll see in a second).

It’s time to learn how the p & po commands get their content. You’ll continue using the

Signals project for this chapter.

Start by opening the Signals project in Xcode. Next, open MasterViewController.swift

and add the following code at the top of the class:

override var description: String {
 return "Yay! debugging " + super.description
}

In viewDidLoad, add the following line of code below super.viewDidLoad():

print("\(self)")

Now, put a breakpoint just after the print method you created in the viewDidLoad() of

MasterViewController.swift. Do this using the Xcode GUI breakpoint side panel.

Build and run the application.

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 67

Once the Signals project stops at viewDidLoad(), type the following into the LLDB

console:

(lldb) po self

You’ll get output similar to the following:

Yay! debugging <Signals.MasterViewController: 0x7f8a0ac06b70>

Take note of the output of the print statement and how it matches the po self you just

executed in the debugger.

You can also take it a step further. NSObject has an additional method description used

for debugging called debugDescription. Add the following below your description

variable definition:

override var debugDescription: String {
 return "debugDescription: " + super.debugDescription
}

Build and run the application. When the debugger stops at the breakpoint, print self

again:

(lldb) po self

The output from the LLDB console will look similar to the following:

debugDescription: Yay! debugging <Signals.MasterViewController:
0x7fb71fd04080>

Notice how the po self and the output of self from the print command now differ,

since you implemented debugDescription. When you print an object from LLDB, it’s

debugDescription that gets called, rather than description. Neat!

As you can see, having a description or debugDescription when working with an

NSObject class or subclass will influence the output of po.

So which objects override these description methods? You can easily hunt down which

objects override these methods using the image lookup command with a smart regex

query. Your learnings from previous chapters are already coming in handy!

For example, if you wanted to know all the Objective-C classes that override

debugDescription, you can simply query all the methods by typing:

(lldb) image lookup -rn '\ debugDescription\]'

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 68

Based upon the output, it seems the authors of the Foundation framework have added

the debugDescription to a lot of foundation types (i.e. NSArray), to make our debugging

lives easier. In addition, they’re also private classes that have overridden

debugDescription methods as well.

You may notice one of them in the listing is CALayer. Let’s take a look at the difference

between description and debugDescription in CALayer.

In your LLDB console, type the following:

(lldb) po self.view!.layer.description

You’ll see something similar to the following:

"<CALayer: 0x61000022e980>"

That’s a little boring. Now type the following:

(lldb) po self.view!.layer

You’ll see something similar to the following:

<CALayer:0x61000022e980; position = CGPoint (187.5 333.5); bounds =
CGRect (0 0; 375 667); delegate = <UITableView: 0x7fdd04857c00; frame =
(0 0; 375 667); clipsToBounds = YES; autoresize = W+H; gestureRecognizers
= <NSArray: 0x610000048220>; layer = <CALayer: 0x61000022e980>;
contentOffset: {0, 0}; contentSize: {375, 0}>; sublayers = (<CALayer:
0x61000022d480>, <CALayer: 0x61000022da60>, <CALayer: 0x61000022d8c0>);
masksToBounds = YES; allowsGroupOpacity = YES; backgroundColor = <CGColor
0x6100000a64e0> [<CGColorSpace 0x61800002c580> (kCGColorSpaceICCBased;
kCGColorSpaceModelRGB; sRGB IEC61966-2.1; extended range)] (1 1 1 1)>

That’s much more interesting — and much more useful! Obviously the developers of

Core Animation decided the plain description should be just the object reference, but

if you’re in the debugger, you’ll want to see more information. It’s unclear exactly why

they did this. It might be some of the information in the debug description is expensive

to calculate, so they only want to do it when absolutely necessary.

Next, while you’re still stopped in the debugger (and if not, get back to the

viewDidLoad() breakpoint), try executing the p command on self, like so:

(lldb) p self

You’ll get something similar to the following:

(Signals.MasterViewController) $R2 = 0x00007fb71fd04080 {
 UIKit.UITableViewController = {
 baseUIViewController@0 = <extracting data from value failed>

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 69

 _tableViewStyle = 0
 _keyboardSupport = nil
 _staticDataSource = nil
 _filteredDataSource = 0x000061800024bd90
 _filteredDataType = 0
 }
 detailViewController = nil
}

This might look scary, but let’s break it down.

First, LLDB spits out the class name of self. In this case,

Signals.MasterViewController.

Next follows a reference you can use to refer to this object from now on within your

LLDB session. In the example above, it’s $R2. Yours will vary as this is a number LLDB

increments as you use LLDB.

This reference is useful if you ever want to get back to this object later in the session,

perhaps when you’re in a different scope and self is no longer the same object. In that

case, you can refer back to this object as $R2. To see how, type the following:

(lldb) p $R2

You’ll see the same information printed out again. You’ll learn more about these LLDB

variables later in this chapter.

After the LLDB variable name is the address to this object, followed by some output

specific to this type of class. In this case, it shows the details relevant to

UITableViewController, which is the superclass of MasterViewController, followed by

the detailViewController instance variable.

As you can see, the meat of the output of the p command is different to the po

command. The output of p is dependent upon type formatting: internal data

structures the LLDB authors have added to every (noteworthy) data structure in

Objective-C, Swift, and other languages. It’s important to note the formatting for Swift

is under active development with every Xcode release, so the output of p for

MasterViewController might be different for you.

Since these type formatters are held by LLDB, you have the power to change them if you

so desire. In your LLDB session, type the following:

(lldb) type summary add Signals.MasterViewController --summary-string
"Wahoo!"

You’ve now told LLDB you just want to return the static string, "Wahoo!", whenever you
print out an instance of the MasterViewController class. The Signals prefix is essential

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 70

for Swift classes since Swift includes the module in the classname to prevent
namespace collisions. Try printing out self now, like so:

(lldb) p self

The output should look similar to the following:

(lldb) (Signals.MasterViewController) $R3 = 0x00007fb71fd04080 Wahoo!

This formatting will be remembered by LLDB across app launches, so be sure to remove

it when you’re done playing with the p command. Remove yours from your LLDB

session like so:

(lldb) type summary clear

Typing p self will now go back to the default implementation created by the LLDB

formatting authors. Type formatting is a detailed topic, which is worth further

exploration in a future chapter since it can greatly help debug applications you don’t

have source code for.

Swift vs Objective-C debugging
contexts
It’s important to note there are two debugging contexts when debugging your program:

a non-Swift debugging context and a Swift context. By default, when you stop in

Objective-C code, LLDB will use the non-Swift (Objective-C) debugging context, while if

you’re stopped in Swift code, LLDB will use the Swift context. Sounds logical, right?

If you stop the debugger out of the blue, LLDB will choose the Objective-C context by

default.

Make sure the GUI breakpoint you’ve created in the previous section is still enabled and

build and run the app. When the breakpoint hits, type the following into your LLDB

session:

(lldb) po [UIApplication sharedApplication]

LLDB will throw a cranky error at you:

error: <EXPR>:3:16: error: expected ',' separator
[UIApplication sharedApplication]
 ^
 ,

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 71

You’ve stopped in Swift code, so you’re in the Swift context. But you’re trying to execute
Objective-C code. That won’t work. Similarly, in the Objective-C context, doing a po on
a Swift object will not work.

You can force the expression to be used in the Objective-C context with the -l option to

select the language. However, since the po expression is mapped to expression -O --,

you’ll be unable to use the po command since the arguments you provide come after the

--, which means you’ll have to type out the expression. In LLDB, type the following:

(lldb) expression -l objc -O -- [UIApplication sharedApplication]

Here you’ve told LLDB to use the objc language for Objective-C. You can also use objc+

+ for Objective-C++ if necessary.

LLDB will spit out the reference to the shared application. Try the same thing in Swift.

Since you’re already stopped in the Swift context, try to print the UIApplication

reference using Swift syntax, like so:

(lldb) po UIApplication.shared

You’ll get the same output as you did printing with the Objective-C context. Resume

the program, by typing continue, then pause the Signals application out of the blue.

From there, press the up arrow to bring up the same Swift command you just executed

and see what happens:

(lldb) po UIApplication.shared

Again, LLDB will be cranky:

error: property 'shared' not found on object of type 'UIApplication'

Remember, stopping out of the blue will put LLDB in the Objective-C context. That’s

why you’re getting this error when trying to execute Swift code.

You should always be aware of the language in which you are currently paused in the

debugger.

User defined variables
As you saw earlier, LLDB will automatically create local variables on your behalf when

printing out objects. You can create your own variables as well.

Remove all the breakpoints from the program and build and run the app. Stop the

debugger out of the blue so it defaults to the Objective-C context. From there type:

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 72

(lldb) po id test = [NSObject new]

LLDB will execute this code, which creates a new NSObject and stores it to the test

variable. Now try to print it like so:

(lldb) po test

You’ll get an error like the following:

error: use of undeclared identifier 'test'

This is because you need to prepend variables you want LLDB to remember with the $

character.

Try declaring test again with the $ in front:

(lldb) po id $test = [NSObject new]
(lldb) po $test
<NSObject: 0x60000001d190>

This variable was created in the Objective-C object. But what happens if you try to

access this from the Swift context? Try it, by typing the following:

(lldb) expression -l swift -O -- $test

So far so good. Now try executing a Swift-styled method on this Objective-C class.

(lldb) exppression -l swift -O -- $test.description

You’ll get an error like this:

error: <EXPR>:3:1: error: use of unresolved identifier '$test'
$test.description
^~~~~

If you create an LLDB variable in the Objective-C context, then move to the Swift

context, don’t expect everything to “just work.” This is an area under active

development and the bridging between Objective-C and Swift through LLDB will likely

see improvements over time.

So how could creating references in LLDB actually be used in a real life situation? You

can grab the reference to an object and execute (as well as debug!) arbitrary methods of

your choosing. To see this in action, create a symbolic breakpoint on

MasterViewController’s parent view controller, MasterContainerViewController

using an Xcode symbolic breakpoint for MasterContainerViewController’s viewDidLoad.

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 73

In the Symbol section, type the following:

Signals.MasterContainerViewController.viewDidLoad() -> ()

Be aware of the spaces for the parameters and parameter return type, otherwise the

breakpoint will not work.

Your breakpoint should look like the following:

Build and run the app. Xcode will now break on

MasterContainerViewController.viewDidLoad(). From there, type the following:

(lldb) p self

Since this is the first argument you executed in the Swift debugging context, LLDB will

create the variable, $R0. Resume execution of the program by typing continue in LLDB.

Now you don’t have a reference to the instance of MasterContainerViewController

through the use of self since the execution has left viewDidLoad() and moved on to

bigger and better run loop events.

Oh, wait, you still have that $R0 variable! You can now reference

MasterContainerViewController and even execute arbitrary methods to help debug

your code.

Pause the app in the debugger manually, then type the following:

(lldb) po $R0.title

Unfortunately, you get:

error: use of undeclared identifier '$R0'

You stopped the debugger out of the blue! Remember, LLDB will default to Objective-C;

you’ll need to use the -l option to stay in the Swift context:

(lldb) expression -l swift -- $R0.title

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 74

This will output the following:

(String?) $R1 = "Quarterback"

Of course, this is the title of the view controller, shown in the navigation bar.

Now, type the following:

(lldb) expression -l swift -- $R0.title = "!!!! ! "

Resume the app by typing continue or pressing the play button in Xcode.

Note: To quickly access a poop emoji on your macOS machine, hold down ⌘ + ⌃ +
space. From there, you can easily hunt down the correct emoji by searching for the
phrase “poop”.

It’s the small things in life you cherish!

As you can see, you can easily manipulate variables to your will.

In addition, you can also create a breakpoint on code, execute the code, and cause the

breakpoint to be hit. This can be useful if you’re in the middle of debugging something

and want to step through a function with certain inputs to see how it operates.

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 75

For example, you still have the symbolic breakpoint in viewDidLoad(), so try executing
that method to inspect the code. Pause execution of the program, then type:

(lldb) expression -l swift -O -- $R0.viewDidLoad()

Nothing happened. The breakpoint didn’t hit. What gives? In fact,

MasterContainerViewController did execute the method, but by default, LLDB will

ignore any breakpoints when executing commands. You can disable this option with the

-i option.

Type the following into your LLDB session:

(lldb) expression -l swift -O -i 0 -- $R0.viewDidLoad()

LLDB will now break on the viewDidLoad() symbolic breakpoint you created earlier.

This tactic is a great way to test the logic of methods. For example, you can implement

test-driven debugging, by giving a function different parameters to see how it handles

different input.

Type formatting
One of the nice options LLDB has is the ability to format the output of basic data types.

This makes LLDB a great tool to learn how the compiler formats basic C types. This is a

must to know when you’re exploring the assembly section, which you’ll do later in this

book.

Build and run the app, then pause the debugger out of the blue to make sure you’re in

the Objective-C context.

Type the following into your LLDB session:

(lldb) expression -G x -- 10

This -G option tells LLDB what format you want the output in. The G stands for GDB

format. If you’re not aware, GDB is the debugger that preceded LLDB. This therefore is

saying whatever you specify is a GDB format specifier. In this case, x is used which

indicates hexadecimal.

You’ll see the following output:

(int) $0 = 0x0000000a

This is decimal 10 printed as hexadecimal. Wow!

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 76

But wait! There’s more! LLDB lets you format types using a neat shorthand syntax. Type

the following:

(lldb) p/x 10

You’ll see the same output as before. But that’s a lot less typing!

This is great for learning the representations behind C datatypes. For example, what’s

the binary representation of the integer 10?

(lldb) p/t 10

The /t specifies binary format. You’ll see what decimal 10 looks like in binary. This can

be particularly useful when you’re dealing with a bit field for example, to double check

what fields will be set for a given number.

What about negative 10?

(lldb) p/t -10

Decimal 10 in two’s complement. Neat!

What about the floating point binary representation of 10.0?

(lldb) p/t 10.0

That could come in handy!

How about the ASCII value of the character ’D’?

(lldb) p/d 'D'

Ah so ’D’ is 68! The /d specifies decimal format.

Finally, what is the acronym hidden behind this integer?

(lldb) p/c 1430672467

The /c specifies char format. It takes the number in binary, splits into 8 bit (1 byte)

chunks, and converts each chunk into an ASCII character. In this case, it’s a 4 character

code (FourCC), saying STFU. Hey! Be nice now!

The full list of output formats is as follows (taken from https://sourceware.org/gdb/

onlinedocs/gdb/Output-Formats.html):

• x: hexadecimal

• d: decimal

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 77

• u: unsigned decimal

• o: octal

• t: binary

• a: address

• c: character constant

• f: float

• s: string

If these formats aren’t enough for you, you can use LLDB’s extra formatters, although

you’ll be unable to use the GDB formatting syntax.

LLDB’s formatters can be used like this:

(lldb) expression -f Y -- 1430672467

This gives you the following output:

(int) $0 = 53 54 46 55 STFU

This explains the FourCC code from earlier!

LLDB has the following formatters (taken from http://lldb.llvm.org/varformats.html):

• B: boolean

• b: binary

• y: bytes

• Y: bytes with ASCII

• c: character

• C: printable character

• F: complex float

• s: c-string

• i: decimal

• E: enumeration

• x: hex

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 78

• f: float

• o: octal

• O: OSType

• U: unicode16

• u: unsigned decimal

• p: pointer

Where to go from here?
Pat yourself on the back — this was another jam-packed round of what you can do with

the expression command. Try exploring some of the other expression options yourself

by executing help expression and see if you can figure out what they do.

Advanced Apple Debugging Chapter 5: Expression

raywenderlich.com 79

6
Chapter 6: Thread, Frame &
Stepping Around

You’ve learned how to create breakpoints, how to print and modify values, as well as

how to execute code while paused in the debugger. But so far, you’ve been left high and

dry on how to move around in the debugger and inspect data beyond the immediate. It’s

time to fix that!

In this chapter, you’ll learn how to move the debugger in and out of functions while

LLDB is currently paused.

This is a critical skill to have since you often want to inspect values as they change over

time when entering or exiting snippets of code.

raywenderlich.com 80

Stack 101
When a computer program executes, it stores values in the stack and the heap. Both

have their merits. As an advanced debugger, you’ll need to have a good understanding

of how these work. Right now, let’s take a brief look at the stack.

You may already know the whole spiel about what a stack is in computer science terms.

In any case, it’s worth having a basic understanding (or refresher) of how a process

keeps track of code and variables when executing. This knowledge will come in handy

as you’re using LLDB to navigate around code.

The stack is a LIFO (Last-In-First-Out) queue that stores references to your currently

executing code. This LIFO ordering means that whatever is added most recently, is

removed first. Think of a stack of plates. Add a plate to the top, and it will be the one

you take off first.

The stack pointer points to the current top of the stack. In the plate analogy, the stack

pointer points to that top plate, telling you where to take the next plate from, or where

to put the next plate on.

In this diagram, the high address is shown at the top (0xFFFFFFFF) and the low address

is shown at the bottom (0x00000000) showcasing the stack would grow downwards.

Some illustrations like to have the high address at the bottom to match with the plate
analogy as the stack would be shown growing upwards. However, I believe any diagrams
showcasing the stack should be shown growing downwards from a high address because

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 81

this will cause less headaches later on when talking about offsets from the stack
pointer.

You’ll take an in depth look at the stack pointer and other registers in Chapter 12,

“Assembly and the Stack”, but in this chapter you’ll explore various ways to step

through code that is on the stack.

Examining the stackʼs frames
You’ll continue to use the Signals project for this chapter.

You’ll glimpse some assembly in this chapter. Don’t get scared! It’s not that bad.

However, be sure to use the iPhone X Simulator for this chapter since the assembly will

be different if you were to generate the code on say, an actual iOS device. This is

because a device uses the ARM architecture, whereas the simulator uses your Mac’s

native instruction set, x86_64 (or i386 if you are compiling on something lower than the

iPhone 5s Simulator).

Open the Signals project in Xcode. Next, add a symbolic breakpoint with the following

function name. Be sure to honor the spaces in the function signature or else the

breakpoint will not be recognized.

Signals.MasterViewController.viewWillAppear(Swift.Bool) -> ()

This creates a symbolic breakpoint on MasterViewController’s viewWillAppear(_:)

method.

Build and run the program. As expected, the debugger will pause the program on the

viewWillAppear(_:) method of MasterViewController. Next, take a look at the stack

trace in the left panel of Xcode. If you don’t see it already, click on the Debug

Navigator in the left panel (alternatively, press Command + 7, if you have the default

Xcode keymap).

Make sure the three buttons in the bottom right corner are all disabled. These help filter
stack functions to only functions you have source code for. Since you’re learning about

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 82

public as well as private code, you should always have these buttons disabled so you can
see the full stack trace.

Within the Debug Navigator panel, the stack trace will appear, showing the list of

stack frames, the first one being viewWillAppear(_:). Following that is the Swift/

Objective-C bridging method, @objc MasterViewController.viewWillAppear(Bool) ->

():. This method is automatically generated so Objective-C can reach into Swift code.

After that, there’s a few stack frames of Objective-C code coming from UIKit. Dig a little

deeper, and you’ll see some C++ code belonging to CoreAnimation. Even deeper, you’ll

see a couple of methods all containing the name CFRunLoop that belong to

CoreFoundation. Finally, to cap it all off, is the main function (yes, Swift programs still

have a main function, it’s just hidden from you).

The stack trace you see in Xcode is simply a pretty printed version of what LLDB can tell

you. Let’s see that now.

In the LLDB console, type the following:

(lldb) thread backtrace

You could also simply type bt if you wished, which does the same. It’s actually a

different command and you can see the difference if you pull out your trusty friend,

help.

After the command above, you’ll see a stack trace much like you see in Xcode’s Debug

Navigator.

Type the following into LLDB:

(lldb) frame info

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 83

You’ll get a bit of output similar to the following:

frame #0: 0x000000010ba1f8dc
Signals`MasterViewController.viewWillAppear(animated=false,
self=0x00007fd286c0af10) at MasterViewController.swift:50

As you can see, this output matches the content found in the Debug Navigator. So why

is this even important if you can just see everything from the Debug Navigator? Well,

using the LLDB console gives you finer-grained control of what information you want to

see. In addition, you’ll be making custom LLDB scripts in which these commands will

become very useful. It’s also nice to know where Xcode gets its information from, right?

Taking a look back at the Debug Navigator, you’ll see some numbers starting from 0 and

incrementing as you go down the call stack. This numbering helps you associate which

stack frame you’re looking at. Select a different stack by typing the following:

(lldb) frame select 1

Xcode will jump to the @objc bridging method, the method located at index 1 in the

stack. What's an @objc bridging method? It's a method that's generated by the Swift

compiler to interact with Objective-C's dynamic nature. In earlier versions of Swift

(Swift <= 3.2) any NSObject implied @objc bridging methods being generated. With the

default build settings in Swift 4, even an Objective-C NSObject needs to have @objc (or

@objcMembers) attribute for the Swift compiler to generate the bridging methods.

Provided you’re using the Simulator and not an actual device, you’ll get some assembly

looking similar to the following.

Take note of the green line in the assembly. Right before that line is the callq

instruction that is responsible for executing viewWillAppear(_:) you set a breakpoint

on earlier.

Don’t let the assembly blur your eyes too much. You’re not out of the assembly woods

just yet...

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 84

Stepping
When mastering LLDB, the three most important navigation actions you can do while

the program is paused revolve around stepping through a program. Through LLDB, you

can step over, step in, or step out of code.

Each of these allow you to continue executing your program’s code, but in small chunks

to allow you to examine how the program is executing.

Stepping over
Stepping over allows you to step to the next code statement (usually, the next line) in

the context where the debugger is currently paused. This means if the current

statement is calling another function, LLDB will run until this function has completed

and returned.

Let’s see this in action.

Type the following in the LLDB console:

(lldb) run

This will relaunch the Signals program without Xcode having to recompile. Neat! Xcode

will stop on your symbolic breakpoint as before.

Next, type the following:

(lldb) next

The debugger will move one line forward. This is how you step over. Simple, but useful!

Stepping in
Stepping in means if the next statement is a function call, the debugger will move into

the start of that function and then pause again.

Let’s see this in action.

Relaunch the Breakpoints program from LLDB:

(lldb) run

Next, type the following:

(lldb) step

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 85

No luck. The program should’ve stepped in, because the line it’s on contains a function
call (well, actually it contains a few!).

In this case, LLDB acted more like a “step over” instead of a “step into”. This is because

LLDB will, by default, ignore stepping into a function if there are no debug symbols for

that function. In this case, the function calls are all going into UIKit, for which you

don’t have debug symbols.

There is, however, a setting that specifies how LLDB should behave when stepping into

a function for which no debug symbols exist. Execute the following command in LLDB

to see where this setting is held:

(lldb) settings show target.process.thread.step-in-avoid-nodebug

If true, then stepping in will act as a step over in these instances. You can either change

this setting (which you’ll do in the future), or tell the debugger to ignore the setting,

which you’ll do now.

Type the following into LLDB:

(lldb) step -a0

This tells LLDB to step in regardless of whether you have the required debug symbols or

not.

Stepping out
Stepping out means a function will continue for its duration then stop when it has

returned. From a stack viewpoint, execution continues until the stack frame is popped

off.

Run the Signals project again, and this time when the debugger pauses, take a quick

look at the stack trace. Next, type the following into LLDB:

(lldb) finish

You’ll notice that the debugger is now paused one function up in the stack trace. Try

executing this command a few more times. Remember, by simply pressing Enter, LLDB

will execute the last command you typed. The finish command will instruct LLDB to

step out of the current function. Pay attention to the stack frames in the left panel as

they disappear one by one.

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 86

Stepping in the Xcode GUI
Although you get much more finer-grained control using the console, Xcode already

provides these options for you as buttons just above the LLDB console. These buttons

appear when an application is running.

They appear, in order, as step over, step in, and step out.

Finally, the step over and step in buttons have one more cool trick. You can manually

control the execution of different threads, by holding down Control and Shift while

clicking on these buttons.

This will result in stepping through the thread on which the debugger is paused, while

the rest of the threads remain paused. This is a great trick to have in the back of your

toolbox if you are working with some hard-to-debug concurrency code like networking

or something with Grand Central Dispatch.

Of course LLDB has the command line equivalent to do the same from the console by

using the --run-mode option, or more simply -m followed by the appropriate option.

Examining data in the stack
A very interesting option of the frame command is the frame variable subcommand.

This command will take the debug symbol information found in the headers of your

executable (or a dYSM if your app is stripped... more on that later) and dump

information out for that particular stack frame. Thanks to the debug information, the

frame variable command can easily tell you the scope of all the variables in your

function as well as any global variables within your program using the appropriate

options.

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 87

Run the Signals project again and make sure you hit the viewWillAppear(_:)

breakpoint. Next, navigate to the top of the stack by either clicking on the top stack

frame in Xcode’s Debug Navigator or by entering frame select 0 in the console, or use

LLDB's shorthand command f 0.

Next, type the following:

(lldb) frame variable

You’ll get output similar to the following:

(Bool) animated = false
(Signals.MasterViewController) self = 0x00007fb3d160aad0 {
 UIKit.UITableViewController = {
 baseUIViewController@0 = <extracting data from value failed>

 _tableViewStyle = 0
 _keyboardSupport = nil
 _staticDataSource = nil
 _filteredDataSource = 0x000061800005f0b0
 _filteredDataType = 0
 }
 detailViewController = nil
}

This dumps the variables available to the current stack frame and line of code. If

possible, it’ll also dump all the instance variables, both public and private, from the

current available variables.

You, being the observant reader you are, might notice the output of frame variable

also matches the content found in the Variables View, the panel to the left of the

console window.

If it’s not already, expand the Variables View by clicking on the left icon in the lower

right corner of Xcode. You can compare the output of frame variable to the Variables

View. You might notice frame variable will actually give you more information about

the ivars of Apple’s private API than the Variables View will.

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 88

Next, type the following:

(lldb) frame variable -F self

This is an easier way to look at all the private variables available to

MasterViewController. It uses the -F option, which stands for “flat”.

This will keep the indentation to 0 and only print out information about self, in

MasterViewController.swift.

You’ll get output similar to the truncated output below:

self = 0x00007fff5540eb40
self =
self =
self =
self = {}
self.detailViewController = 0x00007fc728816e00
self.detailViewController.some =
self.detailViewController.some =
self.detailViewController.some = {}
self.detailViewController.some.signal = 0x00007fc728509de0

As you can see, this is an attractive way to explore public variables when working with

Apple’s frameworks.

Where to go from here?
In this chapter, you’ve explored stack frames and the content in them. You’ve also

learned how to navigate the stack by stepping in, out, and over code.

There are a lot of options in the thread command you didn’t cover. Try exploring some

of them with the help thread command, and seeing if you can learn some cool options.

Take a look at the thread until, thread jump, and thread return subcommands. You’ll

use them later, but they are fun commands so give them a shot now to see what they do!

Advanced Apple Debugging Chapter 6: Thread, Frame & Stepping Around

raywenderlich.com 89

7Chapter 7: Image

By now, you have a solid foundation in debugging. You can find and attach to processes

of interest, efficiently create regular expression breakpoints to cover a wide range of

culprits, navigate the stack frame and tweak variables using the expression command.

However, it’s time to explore one of the best tools for finding code of interest through

the powers of LLDB. In this chapter, you’ll take a deep dive into the image command.

The image command is an alias for the target modules subcommand. The image

command specializes in querying information about modules; that is, the code loaded

and executed in a process. Modules can comprise many things, including the main

executable, frameworks, or plugins. However, the majority of these modules typically

come in the form of dynamic libraries. Examples of dynamic libraries include UIKit for

iOS or AppKit for macOS.

The image command is great for querying information about any private frameworks

and its classes or methods not publicly disclosed in these header files.

raywenderlich.com 90

Wait... modules?
You’ll continue using the Signals project. Fire up the project, build on the iPhone X

Simulator and run.

Pause the debugger and type the following into the LLDB console:

(lldb) image list

This command will list all the modules currently loaded. You’ll see a lot! The start of

the list should look something like the following:

[0] 1E1B0254-4F55-3985-92E4-B2B6916AD424 0x000000010e7e7000 /Users/
derekselander/Library/Developer/Xcode/DerivedData/Signals-
atjgadijglwyppbagqpvyvftavcw/Build/Products/Debug-iphonesimulator/
Signals.app/Signals
[1] 002B0442-3D59-3159-BA10-1C0A77859C6A 0x000000011e7c8000 /usr/lib/
dyld
[2] E991FA37-F8F9-39BB-B278-3ACF4712A994 0x000000010e817000 /
Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
Developer/Library/CoreSimulator/Profiles/Runtimes/iOS.simruntime/
Contents/Resources/RuntimeRoot/usr/lib/dyld_sim

The first module is the app's main binary, Signals. The second and third modules

pertain to the dynamic link editors (dyld). These to modules allow your program to load

dynamic libraries into memory as well as the main executable in your process.

But there’s a lot more in this list! You can filter out just those of interest to you. Type

the following into LLDB:

(lldb) image list Foundation

The output will look similar to the following:

[0] D153C8B2-743C-36E2-84CD-C476A5D33C72 0x000000010eb0c000 /
Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
Developer/Library/CoreSimulator/Profiles/Runtimes/iOS.simruntime/
Contents/Resources/RuntimeRoot/System/Library/Frameworks/
Foundation.framework/Foundation

This is a useful way to find out information about just the module or modules you want.

Let’s explore this output. There’s a few interesting bits in there:

1. The module’s UUID is printed out first (D153C8B2-743C-36E2-84CD-C476A5D33C72).

The UUID is important for hunting down symbolic information and uniquely

identifies the Foundation module.

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 91

2. Following the UUID is the load address (0x000000010eb0c000). This identifies where

the Foundation module is loaded into the Signals executable’s process space.

3. Finally, you have the full path to where the module is located on disk.

Let’s take a deeper dive into another common module, UIKit. Type the following into

LLDB:

(lldb) image dump symtab UIKit -s address

This will dump all the symbol table information available for UIKit. It’s more output

than you can shake a stick at! This command sorts the output by the address in which

the functions are implemented in the UIKit module thanks to the -s address argument.

There’s a lot of useful information in there, but you can’t go reading all that, now can

you? You need a way to effectively query the UIKit module with a flexible way to search

for code of interest.

The image lookup command is perfect for filtering out all the data. Type the following

into LLDB:

(lldb) image lookup -n "-[UIViewController viewDidLoad]"

This will dump out information relating just to UIViewController’s viewDidLoad

instance method. You’ll see the name of the symbol relating to this method, and also

where the code for that method is implemented inside the UIKit framework. This is

good and all, but typing this is a little tedious and this can only dump out very specific

instances.

This is where regular expressions come into play. The -r option will let you do a regular

expression query. Type the following into LLDB:

(lldb) image lookup -rn UIViewController

Not only will this dump out all UIViewController methods, it’ll also spit out results like

UIViewControllerBuiltinTransitionViewAnimator since it contains the name

UIViewController. You can be smart with the regular expression query to only spit out

UIViewController methods. Type the following into LLDB:

(lldb) image lookup -rn '\[UIViewController\ '

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 92

Alternatively, you can use the \s meta character to indicate a space so you don't have to

escape an actual space and surround it in quotes. The following expression is

equivalent:

(lldb) image lookup -rn \[UIViewController\s

This is good, but what about categories? They come in the form of

UIViewController(CategoryName). Search for all UIViewController categories.

(lldb) image lookup -rn '\[UIViewController\(\w+\)\ '

This is starting to get complicated. The backslash at the beginning says you want the

literal character for “[”, then UIViewController. Finally the literal character of “(” then

one or more alphanumeric or underscore characters (denoted by \w+), then “)”, followed

by a space.

Working knowledge of regular expressions will help you to creatively query any public

or private code in any of the modules loaded into your binary.

Not only does this print out both public and private code, this will also give you hints to

the methods the UIViewController class overrides from its parent classes.

Hunting for code
Regardless of whether you’re hunting for public or private code, sometimes it’s just

interesting trying to figure out how the compiler created the function name for a

particular method. You briefly used the image lookup command above to find

UIViewController methods. You also used it to hunt for how Swift property setters and

getters are named in Chapter 4, “Stopping in Code”.

However, there are many more cases where knowing how code is generated will give you

a better understanding of where and how to create breakpoints for code you’re

interested in. One particularly interesting example to explore is the method signature

for Objective-C’s blocks.

So what’s the best way to search for a method signature for an Objective-C block? Since

you don’t have any clue on where to start searching for how blocks are named, a good

way to start is by putting a breakpoint inside a block and then inspecting from there.

Open UnixSignalHandler.m, then find the singleton method sharedHandler. Within

the function, look for the following code:

dispatch_once(&onceToken, ^{
 sharedSignalHandler = [[UnixSignalHandler alloc] initPrivate];
});

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 93

Put a breakpoint using the Xcode GUI in the line beginning with sharedSignalHandler.

Then build and run. Xcode will now pause on the line of code you just set a breakpoint

on. Check out the top stack frame in the debugging window.

You can find the name of the function you’re in using Xcode’s GUI. In the Debug

Navigator you’ll see your stack trace and you can look at frame 0. That’s a little hard to

copy and paste (well, impossible, actually). Instead, type the following into LLDB:

(lldb) frame info

You’ll get output similar to the following:

frame #0: 0x000000010530cf70 Commons`__34+[UnixSignalHandler
sharedHandler]_block_invoke((null)=0x000000010abb3470) at
UnixSignalHandler.m:68

As you can see, the full function name is __34+[UnixSignalHandler

sharedHandler]_block_invoke.

There’s an interesting portion to the function name, _block_invoke. This might be the

pattern you need to help uniquely identify blocks in Objective-C. Type the following

into LLDB:

(lldb) image lookup -rn _block_invoke

This will do a regular expression search for the word _block_invoke. It will treat

everything before and after the phrase as a wildcard.

But wait! You accidentally printed out all the Objective-C blocks loaded into the

program. This search included anything from UIKit, Foundation, iPhoneSimulator SDK,

etc. You should limit your search to only search for the Signals module.

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 94

Type the following into LLDB:

(lldb) image lookup -rn _block_invoke Signals

Nothing is printed out. What gives? Open the right Xcode panel and click on the File

Inspector. Alternatively, press ⌘ + Option + 1 if you have the default Xcode keymap.

If you look to where UnixSignalHandler.m is compiled, you’ll see it’s actually

compiled into the Commons framework. So, redo that search and look for Objective-C

blocks in the Commons module. Type the following into LLDB:

(lldb) image lookup -rn _block_invoke Commons

Finally, you’ll get some output!

You’ll now see all the Objective-C blocks that you’ve searched for in the Commons

framework.

Now, let’s create a breakpoint to stop on a subset of these blocks you’ve found. Type the

following into LLDB:

(lldb) rb appendSignal.*_block_invoke -s Commons

Note: There is a subtle difference between searching for code in a module versus
breaking in code for a module. Take the above commands as an example. When
you wanted to search for all blocks in the Commons framework, you used image
lookup -rn _block_invoke Commons. When you wanted to make breakpoints for
blocks in the Commons framework, you used rb appendSignal.*block_invoke -s
Commons. Take note of the -s argument vs the space.

The idea is this breakpoint will hit on any block within the appendSignal method.

Resume the program by clicking the play button or typing continue into LLDB. Jump

over to Terminal and type the following:

pkill -SIGIO Signals

The signal you sent the program will be processed. However, before the signal gets

visually updated to the tableview, your regex breakpoint will get hit.

The first breakpoint you will hit will be in:

__38-[UnixSignalHandler appendSignal:sig:]_block_invoke

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 95

Go past this by continuing the debugger.

Next you’ll hit a breakpoint in:

__38-[UnixSignalHandler appendSignal:sig:]_block_invoke_2

There’s an interesting item to note about this function name compared to the first;

notice the number 2 in the method name. The compiler uses a base of

<FUNCTION_NAME>_block_invoke for blocks defined within the function called

<FUNCTION_NAME>. However, when there’s more than one block in the function, a number

is appended to the end to denote this.

As you learned in the previous chapter, the frame variable command will print all

known local variable instances to a particular function. Try executing that command

now to see the reference found in this particular block. Type the following into LLDB:

(lldb) frame variable

The output will look similar to the following:

(__block_literal_5 *) = 0x0000608000275e80
(int) sig = <read memory from 0x41 failed (0 of 4 bytes read)>

(siginfo_t *) siginfo = <read memory from 0x39 failed (0 of 8 bytes
read)>

(UnixSignalHandler *const) self = <read memory from 0x31 failed (0 of 8
bytes read)>

Those read memory failures don’t look good! Step over once, either using the Xcode

GUI or by typing next in LLDB. Next, execute frame variable again in LLDB. This time

you’ll see something similar to the following:

(__block_literal_5 *) = 0x0000608000275e80
(int) sig = 23
(siginfo_t *) siginfo = 0x00007fff587525e8
(UnixSignalHandler *) self = 0x000061800007d440
(UnixSignal *) unixSignal = 0x000000010bd9eebe

You needed to step over one statement, so the block executed some initial logic to setup

the function, also known as the function prologue. The function prologue is a topic

related to assembly, which you’ll learn about in Section II.

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 96

This is actually quite interesting. First you see an object which references the block

that’s being invoked. In this case it’s the type __block_literal_5. Then there are the

sig and siginfo parameters that were passed into the Objective-C method where this

block is invoked from. How did these get passed into the block?

Well, when a block is created, the compiler is smart enough to figure out what

parameters are being used by it. It then creates a function that takes these as

parameters. When the block is invoked, it’s this function that is called, with the relevant

parameters passed in.

Type the following into LLDB:

(lldb) image lookup -t __block_literal_5

You'll get something similar to the following:

Best match found in /Users/derekselander/Library/Developer/Xcode/
DerivedData/Signals-efqxsbqzgzcqqvhjgzgeabtwfufy/Build/Products/Debug-
iphonesimulator/Signals.app/Frameworks/Commons.framework/Commons:
id = {0x100000cba}, name = "__block_literal_5", byte-size = 52, decl =
UnixSignalHandler.m:123, compiler_type = "struct __block_literal_5 {
 void *__isa;
 int __flags;
 int __reserved;
 void (*__FuncPtr)();
 __block_descriptor_withcopydispose *__descriptor;
 UnixSignalHandler *const self;
 siginfo_t *siginfo;
 int sig;
}"

This is the object that defines the block! Neat!

As you can see, this is almost as good as a header file for telling you how to navigate the

memory in the block. Provided you cast the reference in memory to the type

__block_literal_5, you can easily print out all the variables referenced by the block.

Start by getting the stack frame’s variable information again by typing the following:

(lldb) frame variable

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 97

Next, find the address of the __block_literal_5 object and print it out like so:

(lldb) po ((__block_literal_5 *)0x0000618000070200)

You should see something similar to the following:

<__NSMallocBlock__: 0x0000618000070200>

If you don’t, make sure the address you’re casting to a __block_literal_5 is the address

of your block as it will differ each time the project is run.

Note: Bug alert in lldb-900.0.57 where LLDB will incorrectly dereference the
__block_literal_5 pointer when executing the frame variable command. This
means that the pointer output of (__block_literal_5 *) will give the class
NSMallocBlock instead of the instance of NSMallocBlock. If you are getting the
class description instead of an instance description, you can get around this by
either referencing the RDI register immediately at the start of the function, or
obtain the instance of the __NSMallocBlock__ via x/gx '$rbp - 32' if you are
further into the function.

Now you can query the members of the __block_literal_5 struct. Type the following

into LLDB:

(lldb) p/x ((__block_literal_5 *)0x0000618000070200)->__FuncPtr

This will dump the location of the function pointer for the block. The output will look

like the following:

(void (*)()) $1 = 0x000000010756d8a0 (Commons`__38-[UnixSignalHandler
appendSignal:sig:]_block_invoke_2 at UnixSignalHandler.m:123)

The function pointer for the block points to the function which is run when the block is

invoked. It’s the same address that is being executed right now! You can confirm this by

typing the following, replacing the address with the address of your function pointer

printed in the command you last executed:

(lldb) image lookup -a 0x000000010756d8a0

This uses the -a (address) option of image lookup to find out which symbol a given

address relates to.

Jumping back to the block struct’s members, you can also print out all the parameters

passed to the block as well. Type the following, again replacing the address with the

address of your block:

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 98

(lldb) po ((__block_literal_5 *)0x0000618000070200)->sig

This will output the signal number that was sent in as a parameter to the block’s parent

function.

There is also a reference to the UnixSignalHandler in a member of the struct called

self. Why is that? Take a look at the block and hunt for this line of code:

[(NSMutableArray *)self.signals addObject:unixSignal];

It’s the reference to self the block captured, and uses to find the offset of where the

signals array is. So the block needs to know what self is. Pretty cool, eh?

Using the image dump symfile command in combination with the module is a great way

to learn how a certain unknown data type works. It’s also a great tool to understand

how the compiler generates code for your sources.

Additionally, you can inspect how blocks hold references to pointers outside the block

— a very useful tool when debugging memory retain cycle problems.

Snooping around
OK, you’ve discovered how to inspect a private class’s instance variables in a static

manner, but that block memory address is too tantalizing to be left alone. Try printing

it out and exploring it using dynamic analysis. Type the following, replacing the address

with the address of your block:

po 0x0000618000070200

LLDB will dump out a class indicating it’s an Objective-C class.

<__NSMallocBlock__: 0x618000070200>

This is interesting. The class is __NSMallocBlock__. Now that you’ve learned how to

dump methods for both private and public classes, it’s time to explore what methods

__NSMallocBlock__ implements. In LLDB, type:

(lldb) image lookup -rn __NSMallocBlock__

Nothing. Hmm. This means __NSMallocBlock__ doesn’t override any methods

implemented by its super class. Type the following in LLDB to figure out the parent

class of __NSMallocBlock__.

(lldb) po [__NSMallocBlock__ superclass]

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 99

This will produce a similarly named class named __NSMallocBlock — notice the lack of
trailing underscores. What can you find out about this class? Does this class implement
or override any methods? Type the following into LLDB:

(lldb) image lookup -rn __NSMallocBlock

The methods dumped by this command seems to indicate that __NSMallocBlock is

responsible for memory management, since it implements methods like retain and

release. What is the parent class of __NSMallocBlock? Type the following into LLDB:

(lldb) po [__NSMallocBlock superclass]

You’ll get another class named NSBlock. What about this class? Does it implement any

methods? Type the following into LLDB:

(lldb) image lookup -rn 'NSBlock\ '

Notice the backslash and space at the end. This ensures there are no other classes that

will match this query — remember, without it, a different class could be returned that

contains the name NSBlock. A few more methods will be spat out. One of them, invoke,

looks incredibly interesting:

Address: CoreFoundation[0x000000000018fd80] (CoreFoundation.__TEXT.__text
+ 1629760)
 Summary: CoreFoundation`-[NSBlock invoke]

You’re now going to try to invoke this method on the block. However, you don’t want

the block to disappear when the references that are retaining this block release their

control, thus lowering the retainCount, and potentially deallocating the block.

There’s a simple way to hold onto this block — just retain it! Type the following into

LLDB, replacing the address with the address of your block:

(lldb) po id $block = (id)0x0000618000070200
(lldb) po [$block retain]
(lldb) po [$block invoke]

For the final line, you’ll see the following output:

Appending new signal: SIGIO
 nil

This shows you the block has been invoked again! Pretty neat!

It only worked because everything was already set up in the right way for the block to

be invoked, since you’re currently paused right at the start of the block.

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 100

This type of methodology for exploring both public and private classes, and then

exploring what methods they implement, is a great way to learn what goes on

underneath the covers of a program. You’ll later use the same process of discovery for

methods and then analyze the assembly these methods execute, giving you a very close

approximation of the source code of the original method.

Private debugging methods
The image lookup command does a beautiful job of searching for private methods as

well the public methods you’ve seen throughout your Apple development career.

However, there are some hidden methods which are quite useful when debugging your

own code.

For example, a method beginning with _ usually denotes itself as being a private (and

potentially important!) method.

Let’s try to search for any Objective-C methods in all of the modules that begin with the

underscore character and contain the word “description” in it.

Build and run the project again. When your breakpoint in sharedHandler is hit, type the

following into LLDB:

(lldb) image lookup -rn (?i)\ _\w+description\]

This regular expression is a bit complex so let’s break it down.

The expression searches for a space (\) followed by an underscore (_). Next, the

expression searches for one or more alphanumeric or underscore characters (\w+)

followed by the word description, followed by the] character.

The beginning of the regular expression has an interesting set of characters, (?i). This

states you want this to be a case insensitive search.

This regular expression has backslashes prepending characters. This means you want

the literal character, instead of its regular expression meaning. It’s called “escaping”.

For example, in a regular expression, the] character has meaning, so to match the

literal “]” character, you need to use \].

The exception to this in the regular expression above is the \w character. This is a

special search item returning an alphanumeric character or an underscore (i.e. _, a-z, A-

Z, 0-9).

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 101

If you had the deer in the headlights expression when reading this line of code, it’s

strongly recommended to carefully scan https://docs.python.org/2/library/re.html to

brush up on your regular expression queries; it’s only going to get more complicated

from here on out.

Carefully scan through the output of image lookup. It’s often this tedious scanning that

gives you the best answers, so please make sure you go through all the output.

You’ll notice a slew of interesting methods belonging to an NSObject category named

IvarDescription belonging in UIKit.

Redo the search so only contents in this category get printed out. Type the following

into LLDB:

(lldb) image lookup -rn NSObject\(IvarDescription\)

The console will dump out all the methods this category implements. Of the group of

methods, there are a couple very interesting methods that stand out:

_ivarDescription
_propertyDescription
_methodDescription
_shortMethodDescription

Since this category is on NSObject, any subclass of NSObject can use these methods.

This is pretty much everything, of course!

Execute the _ivarDescription on the UIApplication Objective-C class. Type the

following into LLDB:

(lldb) po [[UIApplication sharedApplication] _ivarDescription]

You’ll get a slew of output since UIApplication holds many instance variables behind

the scenes. Scan carefully and find something that interests you. Don’t come back to

reading this until you find something of interest. This is important.

After carefully scanning the output, you can see a reference to the private class

UIStatusBar. Which Objective-C setter methods does UIStatusBar have, I hear you ask?

Let’s find out! Type the following into LLDB:

(lldb) image lookup -rn '\[UIStatusBar\ set'

This dumps all the setter methods available to UIStatusBar. In addition to the declared

and overriden methods available in UIStatusBar, you have access to all the methods

available to its parent class. Check to see if the UIStatusBar is a subclass of the UIView

class

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 102

(lldb) po (BOOL)[[UIStatusBar class] isSubclassOfClass:[UIView class]]

Alternatively, you can repeatedly use the superclass method to jump up the class

hierarchy. As you can see, it looks like this class is a subclass of UIView, so the

backgroundColor property is available to you in this class. Let’s play with it.

First, type the following into LLDB:

(lldb) po [[UIApplication sharedApplication] statusBar]

You’ll see something similar to the following:

<UIStatusBar_Modern: 0x7fdcf3c0f090; frame = (0 0; 375 44); autoresize =
W+BM; layer = <CALayer: 0x60c000036640>>

This prints out the UIStatusBar instance for your app. Next, using the address of the

status bar, type the following into LLDB:

(lldb) po [0x7fdcf3c0f090 setBackgroundColor:[UIColor purpleColor]]

In LLDB, remove any of the previous breakpoints you created.

(lldb) breakpoint delete

Continue the app and see the beauty you’ve unleashed upon the world through your

fingertips!

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 103

Not the prettiest of apps now, but at least you’ve managed to inspect a private method
and used it to do something fun!

Where to go from here?
As a challenge, try figuring out a pattern using image lookup to find all Swift closures

within the Signals module. Once you do that, create a breakpoint on every Swift closure

within the Signals module. If that’s too easy, try looking at code that can stop on

didSet/willSet property helpers, or do/try/catch blocks.

Also, try looking for more private methods hidden away in Foundation and UIKit. Have

fun!

Need another challenge? Using the private UIKit NSObject category method

_shortMethodDescription as well as your image lookup -rn commad, search for the

class that's responsible for displaying time in the upper left corner of the status bar and

change it to something more amusing. Start with dumping the ivars in the

UIApplicationDelegate and maybe find like a window or something that relates to the

status bar. Drill into subviews and see if you can find it using the tools given so far.

Advanced Apple Debugging Chapter 7: Image

raywenderlich.com 104

8
Chapter 8: Persisting &
Customizing Commands

As you've probably noticed in your development career, typing the same thing over and

over really sucks. If you use a particular command that's difficult to type, there’s no

reason you should have to type the whole thing out. Just as you’ve learned when

creating breakpoints using regular expressions, you’d go crazy typing out the full

names of some of those Swift functions.

The same idea can be applied to any commands, settings, or code executed in LLDB.

However, there's two problems that haven’t been addressed until now: persisting your

commands and creating shortcuts for them! Every time you run a new LLDB session, all

your previous commands you’ve executed will vanish!

In this chapter, you’ll learn how to persist these choices through the .lldbinit file. By

persisting your choices and making convenience commands for yourself, your

debugging sessions will run much more smoothly and efficiently. This is also an

important concept because from here on out, you’ll use the .lldbinit file on a regular

basis.

raywenderlich.com 105

Persisting... how?
Whenever LLDB is invoked, it searches several directories for special initialization files.

If found, these files will be loaded into LLDB as soon as LLDB starts up but before LLDB

has attached to the process (important to know if you’re trying to execute arbitrary

code in the init file). You can use these files to specify settings or create custom

commands to do your debugging bidding.

LLDB searches for an initialization file in the following places:

1. ~/.lldbinit-[context] where [context] is Xcode, if you are debugging with Xcode, or

lldb if you are using the command line incarnation of LLDB. For example, if you

wanted commands that were only available in LLDB while debugging in the

Terminal, you’d add content to ~/.lldbinit-lldb, while if you wanted to have

commands only available to Xcode you’d use ~/.lldbinit-Xcode.

2. Next, LLDB searches for content found in ~/.lldbinit. This is the ideal file for most

of your logic, since you want to use commands in both Xcode and terminal sessions

of LLDB.

3. Finally, LLDB will search the directory where it was invoked. Unfortunately, when

Xcode launches LLDB, it’ll launch LLDB at the / root directory. This isn’t an ideal

place to stick an .lldbinit file, so this particular implementation will be ignored

throughout the book.

Creating the .lldbinit file
In this section you’re going to create your first .lldbinit file.

First, open a Terminal window and type the following:

nano ~/.lldbinit

This uses the nano text editor to open up your .lldbinit file. If you already have an

existing file in the location, nano will open up the file instead of creating a new one.

Note: You really should be using some form of vi or emacs for editing .lldbinit,
and then angrily blog about how unconventional the other editor is. I’m
suggesting nano to stay out of the great debate.

Advanced Apple Debugging Chapter 8: Persisting & Customizing Commands

raywenderlich.com 106

Once the file is open in the nano editor, add the following line of code to the end of your

.lldbinit file:

command alias -- Yay_Autolayout expression -l objc -O --
[[[[[UIApplication sharedApplication] keyWindow] rootViewController]
view] recursiveDescription]

You’ve just created an alias — a shortcut command for a longer expression. The alias’s

name is called Yay_Autolayout and it’ll execute an expression command to get the root

UIView (iOS only) and dump the position and layout of the root view and all of it’s

subviews.

Save your work by pressing Ctrl + O, but don’t exit nano just yet.

Open the Signals Xcode project — you know, the one you’ve been playing with

throughout this section. Build and run the Signals application. Once running, pause

execution and type the alias in the debugger:

(lldb) Yay_Autolayout

This will dump out all the views in the applications! Neat!

Note: The cool thing about this command is it’ll work equally well for apps you do
— and don’t — have source code for. You could, hypothetically, attach LLDB to the
Simulator’s SpringBoard and dump all the views using the exact same method.

Now, use LLDB to get help for this new command:

(lldb) help Yay_Autolayout

The output will look kinda meh. You can do better. Go back to the nano Terminal

window and rewrite the command alias to include some helpful information, like so:

command alias -H "Yay_Autolayout will get the root view and recursively
dump all the subviews and their frames" -h "Recursively dump views" --
Yay_Autolayout expression -l objc -O -- [[[[[UIApplication
sharedApplication] keyWindow] rootViewController] view]
recursiveDescription]

Make sure nano saves the file by pressing Ctrl + O. Next, build and run the Signals

project.

Now when you stop the debugger and type help Yay_Autolayout, you’ll get help text at

the bottom of the output. This is done with the -H command. You can also get a brief

summary by just typing help, which gives the -h description along with the rest of the

commands.

Advanced Apple Debugging Chapter 8: Persisting & Customizing Commands

raywenderlich.com 107

This may seem a bit pointless now, but when you have many, many custom commands

in your .lldbinit file, you’ll be thankful you provided documentation for yourself.

Command aliases with arguments
You’ve just created a standalone command alias that doesn’t require any arguments.

However, you’ll often want to create aliases to which you can supply input.

Go back to the nano window in Terminal. Add the following at the bottom of the file:

command alias cpo expression -l objc -O --

You’ve just created a new command called cpo. The cpo command will do a normal po

(print object), but it’ll use the Objective-C context instead. This is an ideal command to

use when you’re in a Swift context, but want to use Objective-C to print out an address

or register of something you know is a valid Objective-C object.

Save your work in nano, and jump over to the Signals project. Navigate to

MasterViewController’s viewDidLoad and set a breakpoint at the top of the function.

Build and run the application.

To best understand the importance of the cpo command, first get the reference to the

MasterViewController.

(lldb) po self

You’ll get output similar to the following:

<Signals.MasterViewController: 0x7fc8295071a0>

Take the memory address you get at the end of the output (as usual, yours will likely be

different), and try printing that in the debugger.

Advanced Apple Debugging Chapter 8: Persisting & Customizing Commands

raywenderlich.com 108

(lldb) po 0x7fc8295071a0

This will not produce any meaningful output, since you’ve stopped in a Swift file, and

Swift is a type-safe language. Simply printing an address in Swift will not do anything.

This is why the Objective-C context is so useful when debugging, especially when

working in assembly where there are only references to memory addresses.

Now, use the new command you’ve just created on the address:

(lldb) cpo 0x7fc8295071a0

You’ll see the same output as you did with po self:

<Signals.MasterViewController: 0x7fc8295071a0>

This is a helpful command to get a NSObject's description, whether it's created with

Objective-C or Swift.

Where to go from here?
You’ve learned how to create aliases for simple commands as well as persist them in the

.lldbinit file. This will work across both Xcode and Terminal invocations of LLDB.

As an exercise, add help messages to your newly created cpo command in the

~/.lldbinit file so you’ll be able to remember how to use it when you have an

onslaught of custom commands. Remember the -h option is the short help message

that's displayed when you just type help, while the -H option is the longer help

command used when you type help command. Remember to use the -- to separate your

help input arguments to the rest of your command.

In addition, write a command alias for something you often use. Put this alias in your

~/.lldbinit file and try it out!

Advanced Apple Debugging Chapter 8: Persisting & Customizing Commands

raywenderlich.com 109

9
Chapter 9: Regex
Commands

In the previous chapter, you learned about the command alias command as well as how

to persist commands through the lldbinit file. Unfortunately, command alias has some

limitations.

An alias created this way will work great if you’re trying to execute a static command,

but usually you’d want to feed input into a command in order to get some useful

output.

Where command alias falls short is it essentially replaces the alias with the actual

command. What if you wanted to have input supplied into the middle of a command,

such as a command to get the class of a given object instance, providing the object as an

input?

One horribly ugly solution would be using a command alias to do the following (please

don’t ever do this):

(lldb) po id $INPUT = @"input test";
(lldb) command alias getcls po -l objc -O -- [$INPUT class]

This creates a temporary variable in LLDB called $INPUT then uses $INPUT to get the

class. But this is awful, not to mention ugly. You’d have to redeclare $INPUT every time,

which completely negates the point of using a shorthand convenience command in the

first place!

However, don’t despair — there is an elegant solution to supplying input.

raywenderlich.com 110

command regex
The LLDB command command regex acts much like command alias, except you can

provide a regular expression for input which will be parsed and applied to the action

part of the command.

command regex takes an input syntax that looks similar to the following:

s/<regex>/<subst>/

This is a normal regular expression. It starts with 's/', which specifies a stream editor

input to use the substitute command. The <regex> part is the bit that specifies what

should be replaced. The <subst> part says what to replace it with.

Note: This syntax is derived from the sed Terminal command. This is important to
know, because if you’re experimenting using advanced patterns, you can check the
man pages of sed to see what's possible within the substitute formatting syntax.

Time to look at a concrete example. Open up the Signals Xcode project. Build and run,

then pause the application in the debugger. Once the LLDB console is up and ready to

receive input, enter the following command in LLDB:

(lldb) command regex rlook 's/(.+)/image lookup -rn %1/'

This command you’ve entered will make your image regex searches much easier. You’ve

created a new command called rlook. This new command takes everything after the

rlook and prefixes it with image lookup -rn. It does this through a regex with a single

matcher (the parentheses) which matches on one or more characters, and replaces the

whole thing with image lookup -rn %1. The %1 specifies the contents of the matcher.

So, for example, if you enter this:

rlook FOO

LLDB will actually execute the following:

image lookup -rn FOO

Now, instead of having to type the soul-crushingly long image lookup -rn, you can just

type rlook!

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 111

But wait, it gets better. Provided there are no conflicts with the characters rl, you can

simply use that instead. You can specify any command, be it built-in or your own, by

using any prefix which is not shared with another command.

This means you can easily search for methods like viewDidLoad using a much more

convenient amount of typing. Try it out now:

(lldb) rl viewDidLoad

This will produce all the viewDidLoad implementations across all modules in the

current executable. Try limiting it to only code in the Signals app:

(lldb) rl viewDidLoad Signals

Now you’re satisfied with the command, add the following line of code to your

~/.lldbinit file:

command regex rlook 's/(.+)/image lookup -rn %1/'

Note: The best way to implement a regex command is to use LLDB while a
program is running. This lets you iterate on the command regex (by redeclaring it
if you’re not happy with it) and test it out without having to relaunch LLDB. Once
you’re happy with the command, add it to your ~/.lldbinit file so it will be available
every time LLDB starts up.

Now the rlook command will be available to you from here on out, resulting in no more

painful typing of the full image lookup -rn command. Yay!

Executing complex logic
Time to take the command regex up a level. You can actually use this command to

execute multiple commands for a single alias. While LLDB is still paused, implement

this new command:

(lldb) command regex -- tv 's/(.+)/expression -l objc -O -- @import
QuartzCore; [%1 setHidden:!(BOOL)[%1 isHidden]]; (void)[CATransaction
flush];/'

This complicated, yet useful command, will create a command named tv (toggle view),

which toggles a UIView (or NSView) on or off while the debugger is paused.

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 112

Packed into this command are three separate lines of code:

1. @import QuartzCore imports the QuartzCore framework into the debugger’s address

space. This is required because the debugger won’t understand what code you’re

executing until it’s declared. You’re about to execute code from the QuartzCore

framework, so just in case it hasn’t been imported yet, you’re doing it now.

2. [%1 setHidden:!(BOOL)[%1 isHidden]]; toggles the view to either hidden or

visible, depending what the previous state was. Note that isHidden doesn’t know

the return type, so you need to cast it to an Objective-C BOOL

3. The final command, [CATransaction flush], will flush the CATransaction queue.

Manipulating the UI in the debugger will normally mean the screen will not reflect

any updates until the debugger resumes execution. However, this method will

update the screen resulting in LLDB not needing to continue in order to show visual

changes.

Note: Due to the limitations of the input params, specifying multiline input is not
allowed so you have to join all the commands onto one line. This is ugly but
necessary when crafting these regex commands. However, if you ever do this in
actual Objective-C/Swift source code, may the Apple Gods punish you with extra-
long app review times!

Provided LLDB is still paused, execute this newly created tv command:

(lldb) tv [[[UIApp keyWindow] rootViewController] view]

Bring up the Simulator to verify the view has disappeared.

Now simply press Enter in the LLDB console, as LLDB will repeat the last command

you’ve entered. The view will flash back to normal.

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 113

Now that you’re done implementing the tv command, add it to your ~/.lldbinit file:

command regex -- tv 's/(.+)/expression -l objc -O -- @import QuartzCore;
[%1 setHidden:!(BOOL)[%1 isHidden]]; (void)[CATransaction flush];/'

Chaining regex inputs
There’s a reason why that weird stream editor input was chosen for using this

command: this format lets you easily specify multiple actions for the same command.

When given multiple commands, the regex will try to match each input. If the input

matches, that particular <subst> is applied to the command. If the input doesn’t match

for a particular stream, it’ll go to the next command and see if the regex can match that

input.

It’s generally necessary to use the Objective-C context when working with objects in

memory and registers. Also, anything that begins with the square open bracket or the

'@' character is (likely) Objective-C. This is because Swift makes it difficult to work with

memory, and it won’t let you access registers, nor do Swift expressions usually ever

begin with an open bracket or '@' character.

You can use this information to automatically detect which context you need to use for

a given input.

Let’s see how you’d you go about building a command which gets the class information

out of an object, which honors the above requirements.

• In Objective-C, you’d use [objcObject class].

• In Swift, you’d use type(of: swiftObject).

In Xcode, create a Symbolic breakpoint on

Signals.MasterViewController.viewDidLoad() -> () (make sure to keep the spacing).

Build and run, then wait for the breakpoint to be triggered. As usual, head on over to

the debugger.

First, build out the Objective-C implementation of this new command, getcls.

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 114

(lldb) command regex getcls 's/(([0-9]|\$|\@|\[).*)/cpo [%1 class]/'

Wow, that regex makes the eyes blur. Time to break it down:

At first, there’s an inner grouping saying the following characters can be used to match

the start:

• [0-9] means the numbers from 0-9 can be used.

• \$ means the literal character '$' will be matched

• \@ means the literal character '@' will be matched

• \[means the literal character '[' will be matched

Any characters that start with the above will generate a match. Following that is .*

which means zero or more characters will produce a match.

Overall, this means that a number, $, @, or [, followed by any characters will result in the

command matching and running cpo [%1 class]. Once again, %1 is replaced with the

first matcher from the regex. In this case, it’s the entire command. The inner matcher

(matching a number, $, or so on) would be %2.

Try throwing a couple of commands at the getcls command to see how it works:

(lldb) getcls @"hello world"
__NSCFString

(lldb) getcls @[@"hello world"]
__NSSingleObjectArrayI

(lldb) getcls [UIDevice currentDevice]
UIDevice

(lldb) cpo [UIDevice currentDevice]
<UIDevice: 0x60800002b520>

(lldb) getcls 0x60800002b520
UIDevice

Awesome!

However, this only handles references that make sense in the Objective-C context and

that match your command. For example, try the following:

(lldb) getcls self

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 115

You’ll get an error:

error: Command contents 'self' failed to match any regular expression in
the 'getcls' regex command.

This is because there was no matching regex for the input you provided. Let’s add one

which catches other forms of input to getcls. Type the following into LLDB now:

(lldb) command regex getcls 's/(([0-9]|\$|\@|\[).*)/cpo [%1 class]/' 's/
(.+)/expression -l swift -O -- type(of: %1)/'

This looks a bit more complex, but it’s not too bad. The first part of the command is the

same as you added before. But now you’ve added another regex to the end. This one is a

catch-all, just like the rlook command you added. This catch-all simply calls type(of:)

with the input as the parameter.

Try executing the command again for self:

(lldb) getcls self

You’ll now get the expected Signals.MasterViewController output. Since you made the

Swift context as a catch-all, you can use this command in interesting ways.

(lldb) getcls self .title

Notice the space in there, and it still works. This is because you told the Swift context to

quite literally take anything except newlines.

Once, you’re done playing with this new and improved getcls command, be sure to add

it to your ~/.lldbinit file.

Supplying multiple parameters
The final party trick you’ll explore in command regex is supplying multiple parameters

to command regex. However, before you do that, revisit the first command:

(lldb) command regex rlook 's/(.+)/image lookup -rn %1/'

Take a look at the (.+). The parentheses around this make it what is known as a

capture group. The %1 in the right hand side of the substitution (the replacement)

indicates that the %1 should be replaced with the first capture group. Therefore this

whole regular expression means that the entire text is captured, and image lookup -rn

is added before it.

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 116

By supplying more capture groups, you can add more parameters to parse.

Let's start with something nice and easy: reversing the words and outputting them in a

NSString.

In LLDB, type the following:

(lldb) command regex flip 's/(\w+) (\w+)/expression -lobjc -O -- @"%2
%1"/'

And then give this command a whirl:

(lldb) flip hello world

You'll get the expected world hello.

It works by using two capture groups this time. The order is then swapped in the

replacement.

But what if you typed in something like flip hello world, or something with a whole

bunch of tabs/spaces between the two words?

(lldb) flip hello world
error: Command contents 'hello world' failed to match any regular
expression in the 'flip' regex command.

That makes sense. You need to augment the regex to take an arbitrary number of

spaces/tabs. The \s space meta character to the rescue!

Change the command to the following in LLDB:

(lldb) command regex flip 's/(\w+)\s+(\w+)/expression -lobjc -O -- @"%2
%1"/'

Now try the following with whatever amount of spaces and tabs you see fit:

(lldb) flip hello world
world hello

Boom.

As you can see, adding multiple parameters quickly ups the complexity of the regular

expression. By combining multiple capture groups with multiple chained groups, you

can make a rather versatile command regex to handle all types of optional and required

input.

However, that's going to look really, really ugly since all of this needs to be declared on

one line.

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 117

Fortunately, LLDB has the script bridging interface — a fully featured Python
implementation for creating advanced LLDB commands to do your debugging bidding.
You’ll take an in depth look at script bridging in the 4th section of this book.

For now, simply use either command alias or command regex to suit your debugging

needs.

Where to go from here?
Go back to the regex commands you’ve created in this chapter and add syntax and help

help documentation.

You’ll thank yourself for this documentation about your command’s functionality, when

it’s 11 PM on a Friday night and you just want to figure out this gosh darn bug.

Advanced Apple Debugging Chapter 9: Regex Commands

raywenderlich.com 118

Section II: Understanding
Assembly

Knowing what the computer is doing with all those 1s and 0s underneath your code is

an excellent skill to have when digging for useful information about a program. This

section will set you up with the theory you'll need for the remainder of this book in

order to create complex debugging scripts — and introduce you to the basic theory

behind reverse-engineering code.

Chapter 10: Assembly Register Calling Convention

Chapter 11: Assembly & Memory

Chapter 12: Assembly and the Stack

raywenderlich.com 119

10
Chapter 10: Assembly
Register Calling Convention

Now that you’ve gained a basic understanding of how to maneuver around the

debugger, it’s time to take a step down the executable Jenga tower and explore the 1s

and 0s that make up your source code. This section will focus on the low-level aspects

of debugging.

In this chapter, you’ll look at registers the CPU uses and explore and modify parameters

passed into function calls. You’ll also learn about common Apple computer

architectures and how their registers are used within a function. This is known as an

architecture’s calling convention.

Knowing how assembly works and how a specific architecture’s calling convention

works is an extremely important skill to have. It lets you observe function parameters

you don’t have the source code for and lets you modify the parameters passed into a

function. In addition, it’s sometimes even better to go to the assembly level because

your source code could have different or unknown names for variables you’re not aware

of.

For example, let’s say you always wanted to know the second parameter of a function

call, regardless of what the parameter’s name is. Knowledge of assembly gives you a

great base layer to manipulate and observe parameters in functions.

raywenderlich.com 120

Assembly 101
Wait, so what’s assembly again?

Have you ever stopped in a function you didn’t have source code for, and saw an

onslaught of memory addresses followed by scary, short commands? Did you huddle in

a ball and quietly whisper to yourself you’ll never look at this dense stuff again? Well...

that stuff is known as assembly!

Here’s a picture of a backtrace in Xcode, which showcases the assembly of a function

within the Simulator.

Looking at the image above, the assembly can be broken into several parts. Each line in

a assembly instruction contains an opcode, which can be thought of as an extremely

simple instruction for the computer.

So what does an opcode look like? An opcode is an instruction that performs a simple

task on the computer. For example, consider the following snippet of assembly:

pushq %rbx
subq $0x228, %rsp
movq %rdi, %rbx

In this block of assembly, you see three opcodes, pushq, subq, and movq. Think of the

opcode items as the action to perform. The things following the opcode are the source

and destination labels. That is, these are the items the opcode acts upon.

In the above example, there's several registers, shown as rbx, rsp, rdi, and rbp. The %

before each tells you this is a register.

In addition, you can also find a numeric constant in hexadecimal shown as 0x228. The $

before this constant tells you it’s an absolute number.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 121

There’s no need to know what this code is doing at the moment, since you’ll first need

to learn about the registers and calling convention of functions. Then you’ll learn more

about the opcodes and write your own assembly in a future chapter.

Note: In the above example, take note there are a bunch of %’s and $’s that precede
the registers and constants. This is how the disassembler formats the assembly.
However, there are two main ways that assembly can be showcased. The first is
Intel assembly, and the second is AT&T assembly.

By default, Apple’s disassembler tools ship with assembly displayed in the AT&T
format, as it is in the example above. Although this is a good format to work with,
it can be a little hard on the eyes. In the next chapter, you’ll change the assembly
format to Intel, and will work exclusively with Intel assembly syntax from there on
out.

x86_64 vs ARM64
As a developer for Apple platforms, there are two primary architectures you’ll deal with

when learning assembly: x86_64 architecture and ARM64 architecture. x86_64 is the

architecture most likely used on your macOS computer, unless you are running an

“ancient” Macintosh.

x86_64 is a 64-bit architecture, which means every address can hold up to 64 1s or 0s.

Alternatively, older Macs use a 32-bit architecture, but Apple stopped making 32-bit

Macs at the end of the 2010’s. Programs running under macOS are likely to be 64-bit

compatible, including programs on the Simulator. That being said, even if your macOS

is x86_64, it can still run 32-bit programs.

If you have any doubt of what hardware architecture you’re working with, you can get

your computer’s hardware architecture by running the following command in Terminal:

uname -m

ARM64 architecture is used on mobile devices such as your iPhone where limiting

energy consumption is critical.

ARM emphasizes power conservation, so it has a reduced set of opcodes that help

facilitate energy consumption over complex assembly instructions. This is good news

for you, because there are fewer instructions for you to learn on the ARM architecture.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 122

Here’s a screenshot of the same method shown earlier, except this time in ARM64

assembly on an iPhone 7:

You might not be able to differentiate between the two architectures now, but you’ll

soon know them like the back of your hand.

Apple originally shipped 32-bit ARM processors in many of their iOS devices, but have

since moved to 64-bit ARM processors. 32-bit iOS devices are almost obsolete as Apple

has phased them out through various iOS versions. For example, the iPhone 5 was the

final a 32-bit iOS device which is not supported in iOS 11. The "lowest" iPhone that

supports iOS 11 is the iPhone 5s, a 64-bit device.

In recent years, 32-bit devices have manifested themselves in other Apple products. The

first two generations of the Apple Watch are 32-bit devices, however, the 3rd generation

is a 64-bit device. In addition, the (admittedly gimmicky) Apple touch bar found on

newer macOS devices also use a 32-bit architecture.

Since it’s best to focus on what you’ll need for the future, this book will focus primarily

on 64-bit assembly for both architectures. In addition, you’ll start learning x86_64

assembly first and then transition to learning ARM64 assembly so you don’t get

confused. Well, not too confused.

x86_64 register calling convention
Your CPU uses a set of registers in order to manipulate data in your running program.

These are storage holders, just like the RAM in your computer. However they’re located

on the CPU itself very close to the parts of the CPU that need them. So these parts of

the CPU can access these registers incredibly quickly.

Most instructions involve one or more registers and perform operations such as writing

the contents of a register to memory, reading the contents of memory to a register or

performing arithmetic operations (add, subtract, etc.) on two registers.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 123

In x64 (from here on out, x64 is an abbreviation for x86_64), there are 16 general

purpose registers used by the machine to manipulate data.

These registers are RAX, RBX, RCX, RDX, RDI, RSI, RSP, RBP and R8 through R15.

These names will not mean much to you now, but you’ll explore the importance of each

register soon.

When you call a function in x64, the manner and use of the registers follows a very

specific convention. This dictates where the parameters to the function should go and

where the return value from the function will be when the function finishes. This is

important so code compiled with one compiler can be used with code compiled with

another compiler.

For example, take a look at this simple Objective-C code:

NSString *name = @"Zoltan";
NSLog(@"Hello world, I am %@. I'm %d, and I live in %@.", name, 30, @"my
father's basement");

There are four parameters passed into the NSLog function call. Some of these values are

passed as-is, while one parameter is stored in a local variable, then referenced as a

parameter in the function. However, when viewing code through assembly, the

computer doesn’t care about names for variables; it only cares about locations in

memory.

The following registers are used as parameters when a function is called in x64

assembly. Try and commit these to memory, as you’ll use these frequently in the future:

• First Argument: RDI

• Second Argument: RSI

• Third Argument: RDX

• Fourth Argument: RCX

• Fifth Argument: R8

• Sixth Argument: R9

If there are more than six parameters, then the program’s stack is used to pass in

additional parameters to the function.

Going back to that simple Objective-C code, you can re-imagine the registers being

passed like the following pseudo-code:

RDI = @"Hello world, I am %@. I'm %d, and I live in %@.";

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 124

RSI = @"Zoltan";
RDX = 30;
RCX = @"my father's basement";
NSLog(RDI, RSI, RDX, RCX);

As soon as the NSLog function starts, the given registers will contain the appropriate

values as shown above.

However, as soon as the function prologue (the beginning section of a function that

prepares the stack and registers) finishes executing, the values in these registers will

likely change. The generated assembly will likely overwrite the values stored in these

registers, or just simply discard these references when the code has no more need of

them.

This means as soon as you leave the start of a function (through stepping over, stepping

in, or stepping out), you can no longer assume these registers will hold the expected

values you want to observe, unless you actually look at the assembly code to see what

it’s doing.

Exploring registers with this calling convention heavily influences your debugging (and

breakpoint) strategy. If you were to automate any type of breaking and exploring, you

would have to stop at the start of a function call in order to inspect or modify the

parameters without having to actually dive into the assembly.

Objective-C and registers
As you learned in the previous section, registers use a specific calling convention. You

can take that same knowledge and apply it to other languages as well.

When Objective-C executes a method, a special C function is executed named

objc_msgSend. There’s actually several different types of these functions, but more on

that later. This is the heart of Objective-C's dynamic message dispatch. As the first

parameter, objc_msgSend takes the reference of the object upon which the message is

being sent. This is followed by a Selector, which is simply just a char * specifying the

name of the method being called on the object. Finally, objc_msgSend takes a variable

amount of arguments within the function if the selector specifies there should be

parameters.

Let’s look at a concrete example of this in an iOS context:

[UIApplication sharedApplication];

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 125

The compiler will take this code and create the following pseudocode:

id UIApplicationClass = [UIApplication class];
objc_msgSend(UIApplicationClass, "sharedApplication");

The first parameter is a reference to the UIApplication class, followed by the

sharedApplication selector. An easy way to tell if there are any parameters is to simply

check for colons in the Objective-C selector. Each colon will represent a parameter in a

Selector.

Here’s another Objective-C example:

NSString *helloWorldString = [@"Can't Sleep; "
stringByAppendingString:@"Clowns will eat me"];

The compiler will create the following (shown below in pseudocode):

NSString *helloWorldString;
helloWorldString = objc_msgSend(@"Can't Sleep; ",
"stringByAppendingString:", @"Clowns will eat me");

The first argument is an instance of an NSString (@"Can't Sleep; "), followed by the

selector, followed by a parameter which is also an NSString instance.

Using this knowledge of objc_msgSend, you can use the registers in x64 to help explore

content, which you’ll do very shortly.

Putting theory to practice
For this section, you’ll be using a project supplied in this chapter’s resource bundle

called Registers.

Open this project up through Xcode and give it a run.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 126

This is a rather simple application which merely displays the contents of some x64

registers. It’s important to note that this application can’t display the values of

registers at any given moment; it can only display the values of registers during a

specific function call. This means you won’t see too many changes to the values of

these registers since they’ll likely have the same (or similar) value when the function to

grab the register values is called.

Now you’ve got an understanding of the functionality behind the Registers macOS

application, create a symbolic breakpoint for NSViewController’s viewDidLoad method.

Remember to use "NS" instead of "UI", since you’re working on a Cocoa application.

Build and rerun the application. Once the debugger has stopped, type the following into

the LLDB console:

(lldb) register read

This will list all of the main registers at the paused state of execution. However, this is

too much information. You should selectively print out registers and treat them as

Objective-C objects instead.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 127

If you recall, -[NSViewController viewDidLoad] will be translated into the following

assembly pseudocode:

RDI = UIViewControllerInstance
RSI = "viewDidLoad"
objc_msgSend(RDI, RSI)

With the x64 calling convention in mind, and knowing how objc_msgSend works, you

can find the specific NSViewController that is being loaded.

Type the following into the LLDB console:

(lldb) po $rdi

You’ll get output similar to the following:

<Registers.ViewController: 0x6080000c13b0>

This will dump out the NSViewController reference held in the RDI register, which as

you now know, is the location of the first argument to the method.

In LLDB, it’s important to prefix registers with the $ character, so LLDB knows you want

the value of a register and not a variable related to your scope in the source code. Yes,

that’s different than the assembly you see in the disassembly view! Annoying, eh?

Note: The observant among you might notice whenever you stop on an Objective-
C method, you’ll never see the objc_msgSend in the LLDB backtrace. This is
because the objc_msgSend family of functions perfoms a jmp, or jump opcode
command in assembly. This means that objc_msgSend acts as a trampoline
function, and once the Objective-C code starts executing, all stack trace history of
objc_msgSend will be gone. This is an optimization known as tail call

optimization.

Try printing out the RSI register, which will hopefully contain the selector that was

called. Type the following into the LLDB console:

(lldb) po $rsi

Unfortunately, you’ll get garbage output that looks something like this:

140735181830794

Why is this? An Objective-C selector is basically just a char *. This means, like all C

types, LLDB does not know how to format this data. As a result, you must explicitly cast

this reference to the data type you want.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 128

Cast the RSI register to the correct type:

(lldb) po (char *)$rsi

You’ll now get the expected:

"viewDidLoad"

Of course, you can also cast the RSI register to the Selector type to produce the same

result:

(lldb) po (SEL)$rsi

Now, it’s time to explore an Objective-C method with arguments. Since you’ve stopped

on viewDidLoad, you can safely assume the NSView instance has loaded. A method of

interest is the mouseUp: selector implemented by NSView’s parent class, NSResponder.

In LLDB, create a breakpoint on NSResponder’s mouseUp: selector and resume execution.

If you can’t remember how to do that, here are the commands you need:

(lldb) b -[NSResponder mouseUp:]
(lldb) continue

Now, click on the application’s window. Make sure to click on the outside of the

NSScrollView as it will gobble up your click and the -[NSResponder mouseUp:]

breakpoint will not get hit.

As soon as you let go of the mouse or the trackpad, LLDB will stop on the mouseUp:

breakpoint. Print out the reference of the NSResponder by typing the following into the

LLDB console:

(lldb) po $rdi

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 129

You’ll get something similar to the following:

<NSView: 0x608000120140>

However, there’s something interesting with the selector. There’s a colon in it, meaning

there’s an argument to explore! Type the following into the LLDB console:

(lldb) po $rdx

You’ll get the description of the NSEvent:

NSEvent: type=LMouseUp loc=(351.672,137.914) time=175929.4 flags=0
win=0x6100001e0400 winNum=8622 ctxt=0x0 evNum=10956 click=1
buttonNumber=0 pressure=0 deviceID:0x300000014400000
subtype=NSEventSubtypeTouch

How can you tell it’s an NSEvent? Well, you can either look online for documentation on

-[NSResponder mouseUp:] or, you can simply use Objective-C to get the type:

(lldb) po [$rdx class]

Pretty cool, eh?

Sometimes it’s useful to use registers and breakpoints in order to get a reference to an

object you know is alive in memory.

For example, what if you wanted to change the front NSWindow to red, but you had no

reference to this view in your code, and you didn’t want to recompile with any code

changes? You can simply create a breakpoint you can easily trip, get the reference from

the register and manipulate the instance of the object as you please. You’ll try changing

the main window to red now.

Note: Even though NSResponder implements mouseDown:, NSWindow overrides this
method since it’s a subclass of NSResponder. You can dump all classes that
implement mouseDown: and figure out which of those classes inherit from
NSResponder to determine if the method is overridden without having access to
the source code. An example of dumping all the Objective-C classes that
implement mouseDown: is image lookup -rn \smouseDown:, or using the rlook
regex command you created in the previous chapter.

First remove any previous breakpoints using the LLDB console:

(lldb) breakpoint delete
About to delete all breakpoints, do you want to do that?: [Y/n]

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 130

Then type the following into the LLDB console:

(lldb) breakpoint set -o -S "-[NSWindow mouseDown:]"
(lldb) continue

This sets a breakpoint which will fire only once — a one-shot breakpoint.

Tap on the application. Immediately after tapping, the breakpoint should trip. Then

type the following into the LLDB console:

(lldb) po [$rdi setBackgroundColor:[NSColor redColor]]
(lldb) continue

Upon resuming, the NSWindow will change to red!

Swift and registers
When exploring registers in Swift you’ll hit two hurdles that make assembly debugging

harder than it is in Objective-C.

1. First, registers are not available in the Swift LLDB debugging context. This means

you have to get whatever data you want and then use the Objective-C debugging

context to print out the registers passed into the Swift function. Remember that you

can use the expression -l objc -O -- command, or alternatively use the cpo

custom command you made in Chapter 8, “Persisting and Customizing Commands”.

Fortunately, the register read command is available in the Swift context.

2. Second, Swift is not as dynamic as Objective-C. In fact, it’s sometimes best to

assume that Swift is like C, except with a very, very cranky and bossy compiler. If

you have a memory address, you need to explicitly cast it to the object you expect it

to be; otherwise, the Swift debugging context has no clue how to interpret a

memory address.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 131

That being said, the same register calling convention is used in Swift. However, there’s

one very important difference. When Swift calls a function, it has no need to use

objc_msgSend, unless of course you mark up a method to use dynamic. This means when

Swift calls a function, the previously used RSI register assigned to the selector will

actually contain the function’s second parameter.

Enough theory — time to see this in action.

In the Registers project, navigate to ViewController.swift and add the following

function to the class:

func executeLotsOfArguments(one: Int, two: Int, three: Int,
 four: Int, five: Int, six: Int,
 seven: Int, eight: Int, nine: Int,
 ten: Int) {
 print("arguments are: \(one), \(two), \(three),
 \(four), \(five), \(six), \(seven),
 \(eight), \(nine), \(ten)")
}

Now, in viewDidLoad, call this function with the appropriate arguments:

override func viewDidLoad() {
 super.viewDidLoad()
 self.executeLotsOfArguments(one: 1, two: 2, three: 3, four: 4,
 five: 5, six: 6, seven: 7,
 eight: 8, nine: 9, ten: 10)
}

Put a breakpoint on the very same line as of the declaration of executeLotsOfArguments

so the debugger will stop at the very beginning of the function. This is important, or

else the registers might get clobbered if the function is actually executing.

Then remove the symbolic breakpoint you set on -[NSViewController viewDidLoad].

Build and run the app, then wait for the executeLotsOfArguments breakpoint to stop

execution.

Again, a good way to start investigating is to dump the registers. In LLDB, type the

following:

(lldb) register read -f d

This will dump the registers and display the format in decimal by using the -f d option.

The output will look similar to this:

General Purpose Registers:
rax = 10
rbx = 7

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 132

rcx = 4
rdx = 3
rdi = 1
rsi = 2
rbp = 140732920750864
rsp = 140732920750144
r8 = 5
r9 = 6
r10 = 9
r11 = 8
r12 = 4315985456
r13 = 106102873003904
r14 = 88
r15 = 4315985456
rip = 4294982268
Registers`Registers.ViewController.executeLotsOfArguments(one: Swift.Int,
two: Swift.Int, three: Swift.Int, four: Swift.Int, five: Swift.Int, six:
Swift.Int, seven: Swift.Int, eight: Swift.Int, nine: Swift.Int, ten:
Swift.Int) -> () + 76 at ViewController.swift:45
rflags = 514
cs = 43
fs = 0
gs = 00

As you can see, the registers follow the x64 calling convention. RDI, RSI, RDX, RCX, R8 and

R9 hold your first six parameters.

Note: Something I've refrained from telling you about LLDB until now is that
LLDB has several convenience variables to reference assembly registers that come
in the form of $arg{X}, where X is the parameter number. So, remember how RDI is
the first parameter, while RSI is the second? In LLDB, you can reference the first
parameter (RDI) via $arg1. Going along with the example, you can reference the
second parameter (RSI) with $arg2 and so on. These convenience values can also
be used in the ARM64 calling convention even though ARM64 uses different

registers. You should memorize the register calling convention so this book
minimizes the use of these register helper variables.

You may also notice other parameters are stored in some of the other registers. While

this is true, it’s simply a leftover from the code that sets up the stack for the remaining

parameters. Remember, parameters after the sixth argument go on the stack.

RAX, the return register
But wait — there’s more! So far, you’ve learned how six registers are called in a function,

but what about return values?

Fortunately, there is only one designated register for return values from functions: RAX.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 133

Go back to executeLotsOfArguments and modify the function to return a String, like so:

func executeLotsOfArguments(one: Int, two: Int, three: Int,
 four: Int, five: Int, six: Int,
 seven: Int, eight: Int, nine: Int,
 ten: Int) -> String {
 print("arguments are: \(one), \(two), \(three), \(four),
 \(five), \(six), \(seven), \(eight), \(nine), \(ten)")
 return "Mom, what happened to the cat?"
}

In viewDidLoad, modify the function call to receive and ignore the String value.

override func viewDidLoad() {
 super.viewDidLoad()
 let _ = self.executeLotsOfArguments(one: 1, two: 2,
 three: 3, four: 4, five: 5, six: 6, seven: 7,
 eight: 8, nine: 9, ten: 10)
}

Create a breakpoint somewhere in executeLotsOfArguments. Build and run again, and

wait for execution to stop in the function. Next, type the following into the LLDB

console:

(lldb) finish

This will finish executing the current function and pause the debugger again. At this

point, the return value from the function should be in RAX. Type the following into

LLDB:

(lldb) register read rax

You’ll get something similar to the following:

rax = 0x0000000100003760 "Mom, what happened to the cat?"

Boom! Your return value!

Knowledge of the return value in RAX is extremely important as it will form the

foundation of debugging scripts you’ll write in later sections.

Changing around values in registers
In order to solidify your understanding of registers, you’ll modify registers in an

already-compiled application.

Close Xcode and the Registers project. Open a Terminal window and launch the iPhone

X Simulator. Do this by typing the following:

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 134

xcrun simctl list | grep "iPhone X"

This command lists all the devices but searches for only devices containing the phrase

"iPhone X" in it (for iPhone X). It will look something like this:

 iPhone X (A68E22C0-8286-4E60-BF62-92559E15A622) (Shutting Down)

The UUID is what you’re after. Use that to open the iOS Simulator by typing the

following, replacing your UUID as appropriate:

open /Applications/Xcode.app/Contents/Developer/Applications/
Simulator.app --args -CurrentDeviceUDID A68E22C0-8286-4E60-
BF62-92559E15A622

Make sure the simulator is launched and is sitting on the home screen. You can get to

the home screen by pressing Command + Shift + H. Once your Simulator is set up,

head over to the Terminal window and attach LLDB to the SpringBoard application:

lldb -n SpringBoard

This attaches LLDB to the SpringBoard instance running on the iOS Simulator!

SpringBoard is the program that controls the home screen on iOS.

Once attached, type the following into LLDB:

(lldb) p/x @"Yay! Debugging"

You should get some output similar to the following:

(__NSCFString *) $3 = 0x0000618000644080 @"Yay! Debugging"

Take a note of the memory reference of this newly created NSString instance as you’ll

use it soon. Now, create a breakpoint on UILabel’s setText: method in LLDB:

(lldb) b -[UILabel setText:]

Next, type the following in LLDB:

(lldb) breakpoint command add

LLDB will spew some output and go into multi-line edit mode. This command lets you

add extra commands to execute when the breakpoint you just added is hit. Type the

following, replacing the memory address with the address of your NSString from above:

> po $rdx = 0x0000618000644080
> continue
> DONE

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 135

Take a step back and review what you’ve just done. You’ve created a breakpoint on
UILabel’s setText: method. Whenever this method gets hit, you’re replacing what’s in
RDX — the third parameter — with a different NSString instance that says Yay!

Debugging.

Resume the debugger by using the continue command:

(lldb) continue

Try exploring the SpringBoard Simulator app and see what content has changed. Swipe

up from the bottom to bring up the switcher view for all the apps, and observe the

changes:

Try exploring other areas where modal presentations can occur, as this will likely result

in a new UIViewController (and all of its subviews) being lazily loaded, causing the

breakpoint action to be hit.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 136

Although this might seem like a cool gimmicky programming trick, it provides an

insightful look into how a limited knowledge of registers and assembly can produce big

changes in applications you don’t have the source for.

This is also useful from a debugging standpoint, as you can quickly visually verify where

the -[UILabel setText:] is executed within the SpringBoard application and run

breakpoint conditions to find the exact line of code that sets a particular UILabel’s text.

Registers and SDK
Knowing how registers work along with how an application functions can quickly help

you hunt down items of interest.

Here's an example that I frequently use in my day to day iOS development: Oftentimes,

I'll come across a UIButton and want to know the IBAction and receiver of what

happens when I tap on said button.

I could make some crazy, over the top breakpoint... Knowing myself, I usually have

IBActions in a UIView or UIViewController (maybe UITableViewCell?) and usually have

some sort of method whose name includes the word, "tapped."

So maybe the following LLDB command would work?

(lldb) rb View(Controller|Cell)?\s(?i).*tapped

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 137

But I am falsely assuming that coworkers/other devs are using the same naming
convention as me; this idea will not work.

Instead, I know that whenever an IBAction method is executed, it must go through the

UIApplication singleton, where it will find the proper reciever by traversing the

responder chain. To do this, UIControl's -sendAction:to:forEvent: method gets called.

I can put a breakpoint on this method and explore the sendAction: and to: parameters

to find what code the IBAction is executing.

This idea can be applied to apps you do and don't have the source code for. I often find

it faster to use this method even in apps I do have source code for, then to scrape

through the (seemingly) thousands of IBActions in an application.

...But just for show, let's apply this to the iOS Maps application. I am curious about the

name and receiver of the upper right button that focuses the Maps application on the

user's coordinate location.

After attaching to the Maps application via LLDB and setting a breakpoint for -

[UIControl sendAction:to:forEvent:], it's quite easy to find the name and receiver of

what the UIButton does.

The sendAction: argument (RDX) will take a Selector, while the to: argument will be

the receiver (RCX) for the IBAction.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 138

Finding code with register knowledge and a tap of a UIButton, how cool is that?

Where to go from here?
Whew! That was a long one, wasn’t it? Sit back and take a break with your favorite form

of liquid; you’ve earned it.

So what did you learn?

• Architectures define a calling convention which dictates where parameters to a

function and its return value are stored.

• In Objective-C, the RDI register is the reference of the calling NSObject, RSI is the

Selector, RDX is the first parameter and so on.

• In Swift, RDI is the first argument, RSI is the second parameter, and so on provided

that the Swift method isn’t using dynamic dispatch.

• The RAX register is used for return values in functions regardless of whether you’re

working with Objective-C, or Swift.

• Make sure you use the Objective-C context when printing registers with $.

There’s a lot you can do with registers. Try exploring apps you don’t have the source

code for; it’s a lot of fun and will build a good foundation for tackling tough debugging

problems.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 139

Try attaching to an application on the iOS Simulator and map out the
UIViewControllers as they appear using assembly, a smart breakpoint, and a breakpoint
command.

Advanced Apple Debugging Chapter 10: Assembly Register Calling Convention

raywenderlich.com 140

11
Chapter 11: Assembly &
Memory

You’ve begun the journey and learned the dark arts of the x64 calling convention in the

previous chapter. When a function is called, you now know how parameters are passed

to functions, and how function return values come back. What you haven’t learned yet

is how code is executed when it’s loaded into memory.

In this chapter, you’ll explore how a program executes. You’ll look at a special register

used to tell the processor where it should read the next instruction from, as well as how

different sizes and groupings of memory can produce very different results.

raywenderlich.com 141

Setting up the Intel-Flavored Assembly
Experience™
As mentioned in the previous chapter, there are two main ways to display assembly.

One type, AT&T assembly, is the default assembly set for LLDB. This flavor has the

following format:

opcode source destination

Take a look at a concrete example:

movq $0x78, %rax

This will move the hexadecimal value 0x78 into the RAX register. Although this assembly

flavor is nice for some, you’ll use the Intel flavor instead from here on out.

Note: The choice of assembly flavor is somewhat of a flame war — check out this
discussion in StackOverflow: https://stackoverflow.com/questions/972602/att-vs-
intel-syntax-and-limitations.

The choice to use Intel was based on the admittedly loose consensus that Intel is
better for reading, but at times, worse for writing. Since you’re learning about
debugging, the majority of time you’ll be reading assembly as opposed to writing
it.

Add the following lines to the bottom of your ~/.lldbinit file:

settings set target.x86-disassembly-flavor intel
settings set target.skip-prologue false

The first line tells LLDB to display x86 assembly (both 32-bit and 64-bit) in the Intel

flavor.

The second line tells LLDB to not skip the function prologue. You came across this

earlier in this book, and from now on it’s prudent to not skip the prologue since you’ll

be inspecting assembly right from the first instruction in a function.

Note: When editing your ~/.lldbinit file, make sure you don’t use a program like
TextEdit for this, as it will add unnecessary characters into the file that could
result in LLDB not correctly parsing the file. An easy (although dangerous) way to
add this is through a Terminal command like so: echo "settings set
target.x86-disassembly-flavor intel" >> ~/.lldbinit.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 142

Make sure you have two '>>' in there or else you’ll overwrite all your previous
content in your ~/.lldbinit file. If you’re not comfortable with the Terminal,
editors like nano (which you’ve used earlier) are your best bet.

The Intel flavor will swap the source and destination values, remove the '%' and '$'

characters as well as do many, many other changes. Since you’ll not use the AT&T

syntax, it’s better to not explain the full differences between the two assembly flavors,

and instead just learn the Intel format.

Take a look at the previous example, now shown in the Intel flavor and see how much

cleaner it looks:

mov rax, 0x78

Again, this will move the hexadecimal value 0x78 into the RAX register.

Compared to the AT&T flavor shown earlier, the Intel flavor swaps the source and

destination operands. The destination operand now precedes the source operand. When

working with assembly, it’s important you always identify the correct flavor, since you

could expect a different action to occur if you’re not clear which flavor you’re working

with.

From here on out, the Intel flavor will be the path forward. If you ever see a numeric

hexadecimal constant that begins with a $ character, or a register that begins with %,

know that you’re in the wrong assembly flavor and should change it using the process

described above.

Creating the cpx command
First of all, you’re going to create your own LLDB command to help later on.

Open ~/.lldbinit again in your favorite text editor (vim, right?). Then add the

following to the bottom of the file:

command alias -H "Print value in ObjC context in hexadecimal" -h "Print
in hex" -- cpx expression -f x -l objc --

This command, cpx, is a convenience command you can use to print out something in

hexadecimal format, using the Objective-C context. This will be useful when printing

out register contents.

Remember, registers aren’t available in the Swift context, so you need to use the

Objective-C context instead.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 143

Now you have the tools needed to explore memory in this chapter through an assembly
point of view!

Bits, bytes, and other terminology
Before you begin exploring memory, you need to be aware of some vocabulary about

how memory is grouped.

A value that can contain either a 1 or a 0 is known as a bit. You can say there are 64 bits

per address in a 64-bit architecture. Simple enough.

When there are 8 bits grouped together, they’re known as a byte. How many unique

values can a byte hold? You can determine that by calculating 2^8 which will be 256

values, starting from 0 and going to 255.

Lots of information is expressed in bytes. For example, the C sizeof() function returns

the size of the object in bytes.

If you're familiar with ASCII character encoding, you’ll recall all ASCII characters can be

held in a single byte.

It’s time to take a look at this terminology in action and learn some tricks along the

way.

Open up the Registers macOS application, which you’ll find in the resources folder for

this chapter. Next, build and run the app. Once it’s running, pause the program and

bring up the LLDB console. This will result in the non-Swift debugging context being

used since pausing the application out of the blue will bring the non-Swift context by

default.

Type the following in LLDB:

(lldb) p sizeof('A')

This will print out the number of bytes required to make up the 'A' character:

(unsigned long) $0 = 1

Next, type the following:

(lldb) p/t 'A'

You’ll get the following output:

(char) $1 = 0b01000001

This is the binary representation for the character A in ASCII.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 144

Another more common way to display a byte of information is using hexadecimal

values. Two hexadecimal digits are required to represent a byte of information in

hexadecimal.

Print out the hexadecimal representation of 'A':

(lldb) p/x 'A'

You’ll get the following output:

(char) $2 = 0x41

Hexadecimal is great for viewing memory because a single hexadecimal digit represents

exactly 4 bits. So if you have 2 hexadecimal digits, you have 1 byte. If you have 8

hexadecimal digits, you have 4 bytes. And so on.

Here are a few more terms for you that you’ll find useful in the chapters to come:

• Nybble: 4 bits, a single value in hexadecimal

• Half word: 16 bits, or 2 bytes

• Word: 32 bits, or 4 bytes

• Double word or Giant word: 64 bits or 8 bytes.

With this terminology, you’re all set to explore the different memory chunks.

The RIP register
Ah, the exact register to put on your gravestone.

When a program executes, code to be executed is loaded into memory. The location of

which code to execute next in the program is determined by one magically important

register: the RIP or instruction pointer register.

Let’s take a look at that in action. Open the Registers application again and navigate to

the AppDelegate.swift file. Modify the file so it contains the following code:

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 func applicationWillBecomeActive(
 _ notification: Notification) {
 print("\(#function)")
 self.aBadMethod()
 }

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 145

 func aBadMethod() {
 print("\(#function)")
 }

 func aGoodMethod() {
 print("\(#function)")
 }
}

Build and run the application. Unsuprisingly, the method name will get spat out in

applicationWillBecomeActive(_:) to the debug console, followed by the aBadMethod

output. There will be no execution of aGoodMethod.

Create a breakpoint at the very begining of the aBadMethod using the Xcode GUI:

Build and run again. Once the breakpoint is hit at the beginning of the aBadMethod,

navigate to Debug\Debug Workflow\Always Show Disassembly in Xcode. You’ll now

see the actual assembly of the program!

Next, type the following into the LLDB console:

(lldb) cpx $rip

This prints out the instruction pointer register using the cpx command you created

earlier.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 146

You’ll notice the output LLDB spits out will match the address highlighted by the green

line in Xcode:

(unsigned long) $1 = 0x0000000100008910

It’s worth noting your address could be different than the above output, but the address

of the green line and the RIP console output will match. Now, enter the following

command in LLDB:

(lldb) image lookup -vrn ^Registers.*aGoodMethod

This is the tried-and-true image lookup command with the typical regular expression

arguments plus an added argument, -v, which dumps the verbose output.

You’ll get a fair bit of content. Search for the content immediately following range = [;

Command + F will prove useful here. It’s the first value in the range brackets that

you’re looking for.

This address is known as the load address. This is the actual physical address of this

function in memory.

This differs from the usual output you’ve seen in the image lookup command, in it only

displays the offset of the function relative to the executable, also known as the

implementation offset. When hunting for a function’s address, it’s important to

differentiate the load address from the implementation offset in an executable, as it

will differ.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 147

Copy this new address at the beginning of the range brackets. For this particular

example, the load address of aGoodMethod is located at 0x0000000100008910. Now, write

this address which points the beginning of the aGoodMethod method to the RIP register.

(lldb) register write rip 0x0000000100008910

Click continue using the Xcode debug button. It’s important you do this instead of

typing continue in LLDB, as there's a bug that will trip you up when modifying the RIP

register and continuing in the console.

After pressing the Xcode continue button, you’ll see that aBadMethod() is not executed

and aGoodMethod() is executed instead. Verify this by viewing the output in the console

log.

Note: Modifying the RIP register is actually a bit dangerous. You need to make
sure the registers holding data for a previous value in the RIP register do not get
applied to a new function which would make an incorrect assumption with the
registers. Since aGoodMethod and aBadMethod are very similar in functionality,
you’ve stopped at the beginning, and as no optimizations were applied to the
Registers application, this is not a worry.

Registers and breaking up the bits
As mentioned in the previous chapter, x64 has 16 general purpose registers: RDI, RSI,

RAX, RDX, RBP, RSP, RCX, RDX, R8, R9, R10, R11, R12, R13, R14 and R15.

In order to maintain compatibility with previous architectures, such as i386’s 32-bit

architecture, registers can be broken up into their 32, 16, or 8-bit values.

For registers that have had a history across different architectures, the frontmost

character in the name given to the register determines the size of the register. For

example, the RIP register starts with R, which signifies 64 bits. If you wanted the 32 bit

equivalent of the RIP register, you’d swap out the R character with an E, to get the EIP

register.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 148

Why is this useful? When working with registers, sometimes the value passed into a

register does not need to use all 64 bits. For example, consider the Boolean data type:

all you really need is a 1 or a 0 to indicate true or false (though in practice, a Boolean

will take up a byte in register size). Based upon the languages features and constraints,

the compiler knows this and will sometimes only write information to certain parts of a

register.

Let’s see this in action.

Remove all breakpoints in the Registers project. Build and run the project. Now, pause

the program out of the blue.

Once stopped, type the following:

(lldb) register write rdx 0x0123456789ABCDEF

This writes a value to the RDX register.

Let’s halt for a minute. A word of warning: You should be aware that writing to registers

could cause your program to tank, especially if the register you write to is expected to

have a certain type of data. But you’re doing this in the name of education, so don’t

worry if your program does crash!

Confirm that this value has been successfully written to the RDX register:

(lldb) p/x $rdx

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 149

Since this is a 64-bit program, you’ll get a double word, i.e. 64 bits, or 8 bytes, or 16

hexadecimal digits.

Now, try printing out the EDX register:

(lldb) p/x $edx

The EDX register is the least-significant half of the RDX register. So you’ll only see the

least-significant half of the double word, i.e., a word. You should see the following:

0x89abcdef

Next, type the following:

(lldb) p/x $dx

This will print out the DX register, which is the least-significant half of the EDX register.

It is therefore a half word. You should see the following:

0xcdef

Next, type the following:

(lldb) p/x $dl

This prints out the DL register, which is the least-significant half of the DX register — a

byte this time. You should see the following:

0xef

Finally, type the following:

(lldb) p/x $dh

This gives you the most significant half of the DX register, i.e. the other half to that

given by DL. It should come as no surprise that the L in DL stands for "low" and the H in

DH stands for "high".

Keep an eye out for registers with different sizes when exploring assembly. The size of

the registers can give clues about the values contained within. For example, you can

easily hunt down functions that return Booleans by the AL register, since a Boolean will

use 8 bytes and the AL is the 8 bit portion of the 64-bit "return value register", RAX.

Registers R8 to R15
Since the R8 to R15 family of registers were created only for 64-bit architectures, they

use a completely different format for signifying their smaller counterparts.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 150

Now you’ll explore R9’s different sizing options. Build and run the Registers application,

and pause the debugger. Like before, write the same hex value to the R9 register:

(lldb) register write $r9 0x0123456789abcdef

Confirm that you’ve set the R9 register by typing the following:

(lldb) p/x $r9

Next type the following:

(lldb) p/x $r9d

This will print the lower 32 bits of the R9 register. Note how it’s different than how you

specified the lower 32 bits for RDX (that is, EDX, if you’ve forgotten already).

Next, type the following:

(lldb) p/x $r9w

This time you get the lower 16 bits of R9. Again, this is different than how you did this

for RDX.

Finally, type the following:

(lldb) p/x $r9l

This prints out the lower 8 bits of R9.

Although this seems a bit tedious, you’re building up the skills to read an onslaught of

assembly.

Breaking down the memory
Now that you’ve taken a look at the instruction pointer, it’s time to further explore the

memory behind it. As its name suggests, the instruction pointer is actually a pointer.

It’s not executing the instructions stored in the RIP register — it’s executing the

instructions pointed to in the RIP register.

Seeing this in LLDB will perhaps describe it better. Back in the Registers application,

open AppDelegate.swift and once again set a breakpoint on aBadMethod. Build and run

the app.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 151

Once the breakpoint is hit and the program is stopped, navigate back to the assembly

view. If you forgot, and haven’t created a keyboard shortcut for it, it’s found under

Debug\Debug Workflow\Always Show Disassembly.

You’ll be greeted by the onslaught of opcodes and registers. Take a look at the location

of the RIP register which should be pointing to the very beginning of the function.

For this particular build, the beginning address of aBadMethod begins as 0x100008910. As

usual, your address will likely be different.

In the LLDB console, type the following:

(lldb) cpx $rip

As you know by now, this prints out the contents of the instruction pointer register.

As expected, you’ll get the address of the start of aBadMethod. But again, the RIP register

points to a value in memory. What is it pointing to? Well... you could dust off your mad

C coding skillz (you remember those, right?) and dereference the pointer, but there’s a

much more elegant way to go about it using LLDB.

Type the following, replacing the address with the address of your aBadMethod function:

(lldb) memory read -fi -c1 0x100008910

Wow, what the heck does that command do?!

memory read takes a value and reads the contents pointed at by the memory address you

supply. The -f command is a formatting argument; in this case, it’s the assembly

instruction format. Finally you’re saying you only want one assembly instruction to be

printed out with the count, or -c argument.

You’ll get output that looks similar to this:

-> 0x1000017c0: 55 pushq %rbp

This here is some gooooooooood output. It’s telling you the assembly instruction, as

well as the opcode, provided in hexadecimal (0x55) that is responsible for the pushq

%rbp operation.

Note: Wait, did you see a '%' preceeding a register?! There’s a bug in LLDB that
doesn’t honor your assembly flavor when printing code in the instruction format.
Remember, if you see this kind of thing the source and destination operands are
reversed!

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 152

Let’s look at that "55" there in the output some more. This is an encoding of the entire
instruction, i.e. the whole pushq %rbp. Don’t believe me? You can verify it. Type the
following into LLDB:

(lldb) expression -f i -l objc -- 0x55

This effectively asks LLDB to interpret 0x55 as an x64 opcode. You’ll get the following

output:

$1 = 55 pushq %rbp

That command is a little long, but it’s because you need the required switch to

Objective-C context if you are in the Swift debugging context. However, if you move to

the Objective-C debugging context, you can use a convenience expression that is a lot

shorter.

Try clicking on a different frame in the left panel of Xcode to get into an Objective-C

context which doesn’t contain Swift or Objective-C/Swift bridging code. Click on any

frame which is in an Objective-C function.

Next, type the following into the LLDB console:

(lldb) p/i 0x55

Much better, right?

Now, back to the application in hand. Type the following into LLDB, replacing the

address once again with your aBadMethod function address:

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 153

(lldb) memory read -fi -c10 0x1000017c0

You’ll get 10x the output! That’s something worthy to put on that LinkedIn résumé...

-> 0x100008910: 55 pushq %rbp
 0x100008911: 48 89 e5 movq %rsp, %rbp
 0x100008914: 48 81 ec c0 00 00 00 subq $0xc0, %rsp
 0x10000891b: 4c 89 6d f8 movq %r13, -0x8(%rbp)
 0x10000891f: b8 01 00 00 00 movl $0x1, %eax
 0x100008924: 89 c7 movl %eax, %edi
 0x100008926: e8 d5 05 00 00 callq 0x100008f00 ;
symbol stub for: generic specialization <preserving fragile attribute,
Any> of Swift._allocateUninitializedArray<A>(Builtin.Word) ->
(Swift.Array<A>, Builtin.RawPointer)
 0x10000892b: 48 89 c7 movq %rax, %rdi
 0x10000892e: 48 89 45 a8 movq %rax, -0x58(%rbp)
 0x100008932: 48 89 55 a0 movq %rdx, -0x60(%rbp)

There’s something interesting to note here: assembly instructions can have variable

lengths. Take a look at the first instruction, versus the rest of the instructions in the

output. The first instruction is 1 byte long, represented by 0x55. The following

instruction is three bytes long.

Make sure you are still in an Objective-C context, and try to print out the opcode

responsible for this instruction. It’s just three bytes, so all you have to do is join them

together, right?

(lldb) p/i 0x4889e5

You’ll get a different instruction completely unrelated to the mov %rsp, %rbp

instruction! You’ll see this:

e5 89 inl $0x89, %eax

What gives? Perhaps now would be a good time to talk about endianness.

Endianness... this stuff is reversed?
The x64 as well as the ARM family architecture devices all use little-endian, which

means that data is stored in memory with the least significant byte first. If you were to

store the number 0xabcd in memory, the 0xcd byte would be stored first, followed by the

0xab byte.

Back to the instruction example, this means that the instruction 0x4889e5 will be stored

in memory as 0xe5, followed by 0x89, followed by 0x48.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 154

Jumping back to that mov instruction you encountered earlier, try reversing the bytes

that used to make up the assembly instruction. Type the following into LLDB:

(lldb) p/i 0xe58948

You’ll now get your expected assembly instruction:

$2 = 48 89 e5 movq %rsp, %rbp

Let’s see some more examples of little-endian in action. Type the following into LLDB:

(lldb) memory read -s1 -c20 -fx 0x100008910

This command reads the memory at address 0x100008910. It reads in size chunks of 1

byte thanks to the -s1 option, and a count of 20 thanks to the -c20 option. You’ll see

something like this:

0x100008910: 0x55 0x48 0x89 0xe5 0x48 0x81 0xec 0xc0
0x100008918: 0x00 0x00 0x00 0x4c 0x89 0x6d 0xf8 0xb8
0x100008920: 0x01 0x00 0x00 0x00

Now, double the size and half the count like so:

(lldb) memory read -s2 -c10 -fx 0x100008910

You will see something like this:

0x100008910: 0x4855 0xe589 0x8148 0xc0ec 0x0000 0x4c00 0x6d89 0xb8f8
0x100008920: 0x0001 0x0000

Notice how when the memory values are grouped together, they are reversed thanks to

being in little-endian.

Now double the size and half the count again:

(lldb) memory read -s4 -c5 -fx 0x100008910

And now you’ll get something like this:

0x100008910: 0xe5894855 0xc0ec8148 0x4c000000 0xb8f86d89
0x100008920: 0x00000001

Once again the values are reversed compared to the previous output.

This is very important to remember and also a source of confusion when exploring

memory. Not only will the size of memory give you a potentially incorrect answer, but

also the order. Remember this when you start yelling at your computer when you’re

trying to figure out how something should work!

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 155

Where to go from here?
Good job getting through this one. Memory layout can be a confusing topic. Try

exploring memory on other devices to make sure you have a solid understanding of the

little-endian architecture and how assembly is grouped together.

In the next chapter, you’ll explore the stack frame and how a function gets called.

Advanced Apple Debugging Chapter 11: Assembly & Memory

raywenderlich.com 156

12
Chapter 12: Assembly and
the Stack

When there are more than six parameters passed into a function, the excess parameters

are passed through the stack (there’s situations when this is not true, but one thing at a

time, young grasshopper). But what does being passed on the stack mean exactly? It’s

time to take a deeper dive into what happens when a function is called from an

assembly standpoint by exploring some “stack related” registers as well as the contents

in the stack.

Understanding how the stack works is useful when you’re reverse engineering

programs, since you can help deduce what parameters are being manipulated in a

certain function when no debugging symbols are available. In a later section, you’ll use

the knowledge from this chapter to build a command in LLDB which scrapes through

functions in memory to find potentially interesting classes to explore.

Let’s begin.

raywenderlich.com 157

The stack, revisited
As discussed previously in Chapter 6, “Thread, Frame & Stepping Around”, when a

program executes, the memory is laid out so the stack starts at a “high address” and

grows downward, towards a lower address; that is, towards the heap.

Note: In some architectures, the stack grows upwards. But for x64 and ARM for
iOS devices, the two you care about, both grow the the stack downwards.

Confused? Here’s an image to help clarify how the stack moves.

The stack starts at a high address. How high, exactly, is determined by the operating

system’s kernel. The kernel gives stack space to each running program (well, each

thread).

The stack is finite in size and increases by growing downwards in memory address

space. As space on the stack is used up, the pointer to the “top” of the stack moves

down from the highest address to the lowest address.

Once the stack reaches the finite size given by the kernel, or if it crosses the bounds of

the heap, the stack is said to overflow. This is a fatal error, often referred to as a stack

overflow. Now you know where that website resource you often use gets its name from!

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 158

Stack pointer & base pointer registers
Two very important registers you’ve yet to learn about are the RSP and RBP. The stack

pointer register, RSP, points to the head of the stack for a particular thread. The head of

the stack will grow downwards, so the RSP will decrement when items are added to the

stack. The RSP will always point to the head of the stack.

Here’s a visual of the stack pointer changing when a function is called.

In the above image, the sequence of the stack pointer follows:

1. The stack pointer currently points to Frame 3.

2. The code pointed to by the instruction pointer register calls a new function. The

stack pointer gets updated to point to a new frame, Frame 4, which is potentially

responsible for scratchspace and data inside this newly called function from the

instruction pointer.

3. Execution is completed in Frame 4 and control resumes back in Frame 3. The stack

pointer’s previous reference to Frame 4 gets popped off and resumes pointing to

Frame 3

The other important register, the base pointer register (RBP), has multiple uses during a

function being executed. Programs use offsets from the RBP to access local variables or

function parameters while execution is inside the method/function. This happens

because the RBP is set to the value of the RSP register at the beginning of a function in

the function prologue.

The interesting thing here is the previous contents of the base pointer are stored on the
stack before it’s set to the value of the RSP register. This is the first thing that happens in
the function prologue. Since the base pointer is saved onto the stack and set to the

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 159

current stack pointer, you can traverse the stack just by knowing the value in the base
pointer register. A debugger does this when it shows you the stack trace.

Note: Some systems don’t use a base pointer, and it’s possible to compile your
application to omit using the base pointer. The logic is it might be beneficial to
have an extra register to use. But this means you can’t unwind the stack easily,
which makes debugging much harder.

Yeah, an image is definitely needed to help explain.

When a function prologue is finished setting up, the contents of RBP will point to the

previous RBP a stack frame lower.

Note: When you jump to a different stack frame by clicking on a frame in Xcode or
using LLDB, both the RBP & RSP registers will change values to correspond to the
new frame! This is expected because local variables for a function use offsets of
RBP to get their values.

If the RBP didn’t change, you’d be unable to print local variables to that function,
and the program might even crash. This might result in a source of confusion
when exploring the RBP & RSP registers, so always keep this in mind. You can verify

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 160

this in LLDB by selecting different frames and typing cpx $rbp or cpx $rsp in the
LLDB console.

So why are these two registers important to learn about? When a program is compiled

with debug information, the debug information references offsets from the base pointer

register to get a variable. These offsets are given names, the same names you gave your

variables in your source code.

When a program is compiled and optimized for release, the debug information that

comes packaged into the binary is removed. Although the names to the references of

these variables and parameters are removed, you can still use offsets of the stack

pointer and base pointer to find the location of where these references are stored.

Stack related opcodes
So far, you’ve learned about the calling convention and how the memory is laid out, but

haven’t really explored what the many opcodes actually do in x64 assembly. It’s time to

focus on several stack related opcodes in more detail.

The 'push' opcode
When anything such as an int, Objective-C instance, Swift class or a reference needs to

be saved onto the stack, the push opcode is used. push decrements the stack pointer

(remember, the stack grows downward), then stores the value assigned to the memory

address pointed at by the new RSP value.

After a push instruction, the most recently pushed value will be located at the address

pointed to by RSP. The previous value would be at RSP plus the size of the most recently

pushed value — usually 8 bytes for 64-bit architecture.

To see at a concrete example, consider the following opcode:

push 0x5

This would decrement the RSP, then store the value 5 in the memory address pointed to

by RSP. So, in C pseudocode:

RSP = RSP - 0x8
*RSP = 0x5

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 161

The 'pop' opcode
The pop opcode is the exact opposite of the push opcode. pop takes the value from the

RSP register and stores it to a destination. Next, the RSP is incremented by 0x8 because,

again, as the stack gets smaller, it will grow to a higher address.

Below is an example of pop:

pop rdx

This stores the value of the RSP register into the RDX register, then increments the RSP

register. Here’s the pseudocode below:

RDX = *RSP
RSP = RSP + 0x8

The 'call' opcode
The call opcode is responsible for executing a function. call pushes the address of

where to return to after the called function completes; then jumps to the function.

Imagine a function at 0x7fffb34df410 in memory like so:

0x7fffb34de913 <+227>: call 0x7fffb34df410
0x7fffb34de918 <+232>: mov edx, eax

When an instruction is executed, first the RIP register is incremented, then the

instruction is executed. So, when the call instruction is executed, the RIP register will

increment to 0x7fffb34de918, then execute the instruction pointed to by

0x7fffb34de913. Since this is a call instruction, the RIP register is pushed onto the

stack (just as if a push had been executed) then the RIP register is set to the value

0x7fffb34df410, the address of the function to be executed.

The pseudocode would look similar to the following:

RIP = 0x7fffb34de918
RSP = RSP - 0x8
*RSP = RIP
RIP = 0x7fffb34df410

From there, execution continues at the location 0x7fffb34df410.

Computers are pretty cool, aren’t they?

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 162

The 'ret' opcode
The ret opcode is the opposite of the call opcode, in that it pops the top value off the

stack (which will be the return address pushed on by the call opcode, provided the

assembly’s pushes and pops match) then sets the RIP register to this address. Thus

execution goes back to where the function was called from.

Now that you have a basic understanding of these four important opcodes, it’s time to

see them in action.

It’s very important to have all push opcodes match your pop opcodes, or else the stack

will get out of sync. For example, if there was no corresponding pop for a push, when the

ret happened at the end of the function, the wrong value would be popped off.

Execution would return to some random place, potentially not even a valid place in the

program.

Fortunately, the compiler will take care of synchronizing your push and pop opcodes.

You only need to worry about this when you’re writing your own assembly.

Observing RBP & RSP in action
Now that you have an understanding of the RBP and RSP registers, as well as the four

opcodes that manipulate the stack, it’s time to see it all in action.

In the Registers application lives a function named StackWalkthrough(int). This C

function takes one integer as a parameter and is written in assembly (AT&T assembly,

remember to be able to spot the correct location for the source and destination

operands) and is located in StackWalkthrough.s. Open this file and have a look

around; there’s no need to understand it all just now. You’ll learn how it works in a

minute.

This function is made available to Swift through a bridging header Registers-Bridging-

Header.h, so you can call this method written in assembly from Swift.

Now to make use of this.

Open ViewController.swift, and add the following below viewDidLoad():

override func awakeFromNib() {
 super.awakeFromNib()
 StackWalkthrough(5)
}

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 163

This will call StackWalkThrough with a parameter of 5. The 5 is simply a value used to

show how the stack works.

Before exploring RSP and RBP in depth, it’s best to get a quick overview of what is

happening in StackWalkthrough. Create a symbolic breakpoint on the

StackWalkthrough function.

Once created, build and run.

Xcode will break on StackWalkthrough. Be sure to view the StackWalkthrough function

through "source" (even though it's assembly). Viewing the function through source will

showcase the AT&T assembly (because it was written in AT&T ASM).

Xcode will display the following assembly:

push %rbp ; Push contents of RBP onto the stack (*RSP = RBP, RSP
decreases)

movq %rsp, %rbp ; RBP = RSP
movq $0x0, %rdx ; RDX = 0
movq %rdi, %rdx ; RDX = RDI
push %rdx ; Push contents of RDX onto the stack (*RSP = RDX, RSP
decreases)

movq $0x0, %rdx ; RDX = 0
pop %rdx ; Pop top of stack into RDX (RDX = *RSP, RSP increases)

pop %rbp ; Pop top of stack into RBP (RBP = *RSP, RSP increases)

ret ; Return from function (RIP = *RSP, RSP increases)

Comments have been added to help understand what’s happening. Read it through and

try to understand it if you can. You’re already familiar with the mov instruction, and the

rest of the assembly consists of function related opcodes you’ve just learned about.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 164

This function takes the integer parameter passed into it (as you’ll recall, the first

parameter is passed in RDI), stores it into the RDX register, and pushes this parameter

onto the stack. RDX is then set to 0x0, then the value popped off the stack is stored back

into the RDX register.

Make sure you have a good mental understanding of what is happening in this function,

as you’ll be exploring the registers in LLDB next.

Back in Xcode, create a breakpoint using Xcode’s GUI on the StackWalkthrough(5) line

in the awakeFromNib function of ViewController.swift. Leave the previous

StackWalkthrough symbolic breakpoint alive, since you’ll want to stop at the beginning

of the StackWalkthrough function when exploring the registers.

Build and run and wait for the GUI breakpoint to trigger.

Now click Debug\Debug Workflow\Always Show Disassembly, to show the

disassembly. You’ll be greeted with scary looking stuff!

Wow! Look at that! You’ve landed right on a call opcode instruction. Do you wonder

what function you’re about to enter?

Note: If you didn't land right on the call instruction using the Xcode GUI
breakpoint, you can either use LLDB's thread step-inst or more simply, si to
single step through assembly instructions. Alternatively, you can create a GUI
breakpoint on the memory address that calls the StackWalkthrough function.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 165

From here on out, you’ll step through every assembly instruction while printing out

four registers of interest: RBP, RSP, RDI and RDX. To help with this, type the following

into LLDB:

(lldb) command alias dumpreg register read rsp rbp rdi rdx

This creates the command dumpreg that will dump the four registers of interest. Execute

dumpreg now:

(lldb) dumpreg

You’ll see something similar to the following:

rsp = 0x00007fff5fbfe820
rbp = 0x00007fff5fbfe850
rdi = 0x0000000000000005
rdx = 0x0040000000000000

For this section, the output of dumpreg will be overlaid on each assembly instruction to

show exactly what is happening with each of the registers during each instruction.

Again, even though the values are provided for you, it’s very important you execute and

understand these commands yourself.

Your screen will look similar to the following:

Once you jump into the function call, keep a very close eye on the RSP register, as it’s

about to change once RIP jumps to the beginning of StackWalkthrough. As you’ve

learned earlier, the RDI register will contain the value for the first parameter, which is

0x5 in this case.

In LLDB, type the following:

(lldb) si

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 166

This is an alias for thread step-inst, which tells LLDB to execute the next instruction

and then pause the debugger.

You’ve now stepped into StackWalkthrough. Again for each step, dump out the registers

using dumpreg.

Take note of the difference in the RSP register. The value pointed at by RSP will now

contain the return address to the previous function. For this particular example, RSP,

which points to 0x7fff5fbfe758, will contain the value 0x100002455 — the address

immediately following the call in awakeFromNib.

Verify this now through LLDB:

(lldb) x/gx $rsp

The output will match the address immediately following the call opcode in

awakeFromNib.

Next, perform an si, then dumpreg for the next instruction.

The value of RBP is pushed onto the stack. This means the following two commands will

produce the same output. Execute both of them to verify.

(lldb) x/gx $rsp

This looks at the memory address pointed at by the stack pointer register.

Note: Wait, I just threw a new command at you with no context. The x command is
a shortcut for the memory read command.

The /gx says to format the memory in a giant word (8 bytes, remember that
terminology from Chapter 11, “Assembly & Memory”?) in hexadecimal format.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 167

The weird formatting is due to the popularity of this command in gdb, which saw
this command syntax ported into lldb to make the transition from debuggers
easier.

Now look at the value in the base pointer register.

(lldb) p/x $rbp

Next, step into the next instruction, using si again:

The base pointer is assigned to the value of the stack pointer. Verify both have the same

value using dumpreg as well as the following LLDB command:

(lldb) p (BOOL)($rbp == $rsp)

It’s important you put parentheses around the expression, else LLDB won’t parse it

correctly.

Execute si and dumpreg again. This time it looks like the following:

RDX is cleared to 0.

Execute si and dumpreg again. This time the output looks the following:

RDX is set to RDI. You can verify both have the same value with dumpreg again.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 168

Execute si and dumpreg. This time it looks the following:

RDX is pushed onto the stack. This means the stack pointer was decremented, and RSP

points to a value which will point to the value of 0x5. Confirm that now:

(lldb) p/x $rsp

This gives the current value pointed at RSP. What does the value here point to?

(lldb) x/gx $rsp

You’ll get the expected 0x5. Type si again to execute the next instruction:

RDX is set to 0x0. Nothing too exciting here, move along... move along. Type si and

dumpreg again:

The top of the stack is popped into RDX, which you know was recently set to 0x5. The RSP

is incremented by 0x8. Type si and dumpreg again:

The base pointer is popped off of the stack and reassigned back to the value it originally
had when entering this function. The calling convention specifies RBP should remain

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 169

consistent across function calls. That is, the RBP can’t change to a different value once it
leaves a function, so we’re being a good citizen and restoring its value.

Onto the ret opcode. Keep an eye out for the RSP value about to change. Type si and

dumpreg again:

The return address was pushed off the stack and set to the RIP register; you know this

because you’ve gone back to where the function was called. Control then resumes in

awakeFromNib,

Wowza! That was fun! A simple function, but it illustrates how the stack works through

call, push, pop and ret instructions.

The stack and 7+ parameters
As described in Chapter 10, the calling convention for x86_64 will use the following

registers for function parameters in order: RDI, RSI, RDX, RCX, R8, R9. When a function

requires more than six parameters, the stack needs to be used.

Note: The stack may also need to be used when a large struct is passed to a
function. Each parameter register can only hold 8 bytes (on 64-bit architecture), so
if the struct needs more than 8 bytes, it will need to be passed on the stack as well.
There are strict rules defining how this works in the calling convention, which all
compilers must adhere to.

Open ViewController.swift and find the function named

executeLotsOfArguments(one:two:three:four:five:six:seven:eight:nine:ten:). You

used this function in Chapter 10 to explore the registers. You’ll use it again now to see

how parameters 7 and beyond get passed to the function.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 170

Add the following code to the end of viewDidLoad:

_ = self.executeLotsOfArguments(one: 1, two: 2, three: 3,
 four: 4, five: 5, six: 6,
 seven: 7, eight: 8, nine: 9,
 ten: 10)

Next, using the Xcode GUI, create a breakpoint on the line you just added. Build and run

the app, and wait for this breakpoint to hit. You should see the disassembly view again,

but if you don’t, use the Always Show Disassembly option.

As you’ve learned in the Stack Related Opcodes section, call is responsible for the

execution of a function. Since there’s only one call opcode between where RIP is right

now and the end of viewDidLoad, this means this call must be the one responsible for

calling executeLotsOfArguments(one:two:three:four:five:six:seven:

eight:nine:ten:).

But what are all the rest of the instructions before call? Let’s find out.

These instructions set up the stack as necessary to pass the additional parameters. You

have your usual 6 parameters being put into the appropriate registers, as seen by the

instructions before where RIP is now, from mov edx, 0x1 onwards.

But parameters 7 and beyond need to be passed on the stack. This is done with the

following instructions:

0x1000013e2 <+178>: mov qword ptr [rsp], 0x7
0x1000013ea <+186>: mov qword ptr [rsp + 0x8], 0x8
0x1000013f3 <+195>: mov qword ptr [rsp + 0x10], 0x9
0x1000013fc <+204>: mov qword ptr [rsp + 0x18], 0xa

Looks scary, doesn’t it? I’ll explain.

The brackets containing RSP and an optional value indicate a dereference, just like a *

would in C programming. The first line above says “put 0x7 into the memory address

pointed to by RSP.” The second line says “put 0x8 into the memory address pointed to by

RSP plus 0x8.” And so on.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 171

This is placing values onto the stack. But take note the values are not explicitly pushed

using the push instruction, which would decrease the RSP register. Why is that?

Well, as you’ve learned, during a call instruction the return address is pushed onto the

stack. Then, in the function prologue, the base pointer is pushed onto the stack, and

then the base pointer gets set to the stack pointer.

What you haven’t learned yet is the compiler will actually make room on the stack for

“scratch space”. That is, the compiler allocates space on the stack for local variables in a

function as necessary.

You can easily determine if extra scratch space is allocated for a stack frame by looking

for the sub rsp, VALUE instruction in the function prologue. For example, click on the

viewDidLoad stack frame and scroll to the top. Observe how much scratch space has

been created:

The compiler has been a little bit clever here; instead of doing lots of pushes, it knows it

has allocated some space on the stack for itself, and fills in values before the function

call passing these extra parameters. Individual push instructions would involve more

writes to RSP, which would be less efficient.

Time to look at this scratch space in more depth.

The stack and debugging info
The stack is not only used when calling functions, but it’s also used as a scratch space

for a function’s local variables. Speaking of which, how does the debugger know which

addresses to reference when printing out the names of variables that belong to that

function?

Let’s find out!

Clear all the breakpoints you’ve set and create a new Symbolic breakpoint on

executeLotsOfArguments.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 172

Build and run the app, then wait for the breakpoint to hit.

As expected, control should stop at the ever-so-short name of a function:

executeLotsOfArguments(one:two:three:four:five:six:seven:eight:nine:ten:),

from here on, now referred to as executeLotsOfArguments, because its full name is a bit

of a mouthful!

In the lower right corner of Xcode, click on Show the Variables View:

From there, look at the value pointed at by the one variable... it definitely ain’t holding

the value of 0x1 at the moment. This value seems to be gibberish!

Why is one referencing a seemingly random value?

The answer is stored by the DWARF Debugging Information embedded into the

debug build of the Registers application. You can dump this information to help give

you insight into what the one variable is referencing in memory.

In LLDB, type the following:

(lldb) image dump symfile Registers

You’ll get a crazy amount of output. Search for (Cmd + F) the word "one"; include the

quotes within your search.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 173

Below is a (very) truncated output that includes the relevant information:

Swift.String, type_uid = 0x300000222
0x7f9b4633a988: Block{0x300000222}, ranges =
[0x1000035e0-0x100003e7f)
0x7f9b48171a20: Variable{0x30000023f}, name = "one", type =
{d50e000003000000} 0x00007f9b4828d2a0 (Swift.Int), scope = parameter,
decl = ViewController.swift:39, location = DW_OP_fbreg(-32)

Based upon the output, the variable named one is of type Swift.Int, found in

executeLotsOfArguments, whose location can be found at DW_OP_fbreg(-32). This

rather obfuscated code actually means base pointer minus 40, i.e. RBP - 32. Or in

hexadecimal, RBP - 0x20.

This is important information. It tells the debugger the variable called one can always

be found in this memory address. Well, not always, but always when that variable is

valid, i.e. it’s in scope.

You may wonder why it can’t just be RDI, since that’s where the value is passed to the

function, and it’s also the first parameter. Well, RDI may need to be reused later on

within the function, so using the stack is a safer bet for storage.

The debugger should still be stopped on executeLotsOfArguments. Make sure you’re

viewing the Always Show Disassembly output and hunt for the assembly. It should be

line 16:

mov qword ptr [rbp - 0x20], rdi

Once you’ve found it in the assembly output of executeLotsOfArguments, create a

breakpoint on this line of assembly.

Continue execution so LLDB will stop on this line of assembly.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 174

Try printing out the output of one in LLDB:

(lldb) po one

Gibberish, still. Hmph.

Remember, RDI will contain the first parameter passed into the function. So to make the

debugger be able to see the value that one should be, RDI needs to be written to the

address where one is stored. In this case, RBP - 0x20.

Now, perform an assembly instruction step in LLDB:

(lldb) si

Print the value of one again.

(lldb) po one

Awwww.... yeah! It’s working! The value one is referencing is correctly holding the value

0x1.

You may be wondering what happens if one changes. Well, RBP - 0x20 needs to change

in that case too. This would potentially be another instruction needed to write it there

as well as wherever the value is used. This is why debug builds are so much slower than

release builds.

Stack exploration takeaways
Don’t worry. This chapter is almost done. But there are some very important takeaways

that should be remembered from your stack explorations.

Provided you’re in a function, and the function has finished executing the function

prologue, the following items will hold true to x64 assembly:

• RBP will point to the start of the stack frame for this function.

• *RBP will contain the address of the start of the previous stack frame. (Use x/gx $rbp

in LLDB to see it).

• *(RBP + 0x8) will point to the return address to the previous function in the stack

trace (Use x/gx '$rbp + 0x8' in LLDB to see it).

• *(RBP + 0x10) will point to the 7th parameter (if there is one).

• *(RBP + 0x18) will point to the 8th parameter (if there is one).

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 175

• *(RBP + 0x20) will point to the 9th parameter (if there is one).

• *(RBP + 0x28) will point to the 10th parameter (if there is one).

• RBP - X where X is multiples of 0x8, will reference local variables to that function.

Where to go from here?
Now that you’re familiar with the RBP and RSP registers, you’ve got a homework

assignment!

Attach LLDB to a program (any program, source or no source) and traverse the stack

frame using only the RBP register. Create a breakpoint on an easily triggerable method.

One good example is -[NSView hitTest:], if you attach to a macOS application such as

Xcode, and click on a view.

It’s important to ensure the breakpoint you choose to add is not a Swift function. You’re

going to inspect registers, — and recall you can’t (easily) do this in the Swift context.

Once the breakpoint has been triggered, make sure you’re on frame 0 by typing the

following into LLDB:

(lldb) f 0

The f command is an alias for frame select.

You should see the following two instructions at the top of this function:

push rbp
mov rbp, rsp

These instructions form the start of the function prologue and push RBP onto the stack

and then set RBP to RSP.

Step over both of these instructions using si.

Now the base pointer is set up for this stack frame, you can traverse the stack frames

yourself by inspecting the base pointer.

Execute the following in LLDB:

(lldb) p uintptr_t $Previous_RBP = *(uintptr_t *)$rsp

So now $Previous_RBP equals the old RBP, i.e. the start of the stack frame from the

function that called this one.

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 176

Recall the first thing on the stack frame is the address to where the function should
return. So you can find out where the previous function will return to. This will
therefore be where the debugger is stopped in Frame 2.

To find this out and check that you’re right, execute the following in LLDB:

(lldb) x/gx '$Previous_RBP + 0x8'

This will print something like this:

0x7fff5fbfd718: 0x00007fffa83ed11b

Confirm this address equals the return address in Frame 1 with LLDB:

(lldb) f 2

It will look something like this, depending on what you decided to set the initial

breakpoint in:

frame #2: 0x00007fffa83ed11b AppKit`-[NSWindow
_setFrameCommon:display:stashSize:] + 3234
AppKit`-[NSWindow _setFrameCommon:display:stashSize:]:
 0x7fffa83ed11b <+3234>: xor ebx, ebx
 0x7fffa83ed11d <+3236>: mov rsi, qword ptr [rip + 0x1c5a9d8c] ;
"_bindingAdaptor"
 0x7fffa83ed124 <+3243>: mov rdi, r12
 0x7fffa83ed127 <+3246>: call qword ptr [rip + 0x1c319f53] ; (void
*)0x00007fffbee77b40: objc_msgSend

The first address that it spits out should match the output of your earlier x/gx

command.

Good luck and may the assembly be with you!

Advanced Apple Debugging Chapter 12: Assembly and the Stack

raywenderlich.com 177

Section III: Low Level

With a foundation of assembler theory solidly below you, it’s time to explore other

aspects of how programs work. This section is an eclectic grab-bag of weird and fun

studies into reverse engineering, seldom-used APIs and debugging strategies.

Chapter 13: Hello, Ptrace

Chapter 14: Dynamic Frameworks

Chapter 15: Hooking & Executing Code with dlopen &
dlsym

Chapter 16: Exploring and Method Swizzling Objective-C
Frameworks

raywenderlich.com 178

13Chapter 13: Hello, Ptrace

As alluded to in the introduction to this book, debugging is not entirely about just

fixing stuff. Debugging is the process of gaining a better understanding of what’s

happening behind the scenes. In this chapter, you’ll explore the foundation of

debugging, namely, a system call responsible for a process attaching itself to another

process: ptrace.

In addition, you’ll learn some common security tricks developers use with ptrace to

prevent a process from attaching to their programs. You’ll also learn some easy

workarounds for these developer-imposed restrictions.

raywenderlich.com 179

System calls
Wait wait wait... ptrace is a system call. What’s a system call?

A system call is a powerful, lower-level service provided by the kernel. System calls are

the foundation for user-land frameworks, such as C’s stdlib, Cocoa, UIKit, or even your

own brilliant frameworks are built upon.

macOS High Sierra has about 530 system calls. Open a Terminal window and run the

following command to get a very close estimate of the number of systems calls

available in your system:

sudo dtrace -ln 'syscall:::entry' | wc -l

This command uses an incredibly powerful tool named DTrace to inspect system calls

present on your macOS machine.

Note: You’ll need sudo for the DTrace command as DTrace can monitor processes
across multiple users, as well as perform some incredibly powerful actions. With
great power comes great responsibility — that’s why you need sudo.

You’ll learn more about how to bend DTrace to your will in the 5th section of this book.

For now you’ll use simple DTrace commands to get system call information out of

ptrace.

The foundation of attachment, ptrace
You’re now going to take a look at the ptrace system call in more depth. Open a

Terminal console, or reuse an old one. Before you start, make sure to clear the Terminal

console by pressing ⌘ + K. Next, execute the following DTrace inline script in Terminal

to see how ptrace is called:

sudo dtrace -qn 'syscall::ptrace:entry { printf("%s(%d, %d, %d, %d) from
%s\n", probefunc, arg0, arg1, arg2, arg3, execname); }'

This creates a DTrace probe that will execute every time the ptrace function executes; it

will spit out the arguments of the ptrace system call as well as the executable

responsible for calling.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 180

Don’t worry about the semantics of this DTrace script; you’ll become uncomfortably

familiar with this tool in a later set of chapters. For now, just focus on what’s returned

from the Terminal.

Create a new tab in Terminal with the shortcut ⌘ + T.

Note: If you haven’t disabled Rootless yet, you’ll need to check out Chapter 1 for
more information on how to disable it, or else ptrace will fail when attaching to
Finder and your DTrace scripts will not work.

Once Rootless is disabled, type the following into the new Terminal tab:

lldb -n Finder

Once you’ve attached to the Finder application, the DTrace probe you set up on your

first Terminal tab will spit out some information similar to the following:

ptrace(14, 459, 0, 0) from debugserver

It seems a process named debugserver is responsible for calling ptrace and attaching

to the Finder process. But how was debugserver called? You attached to Finder using

LLDB, not debugserver. And is this debugserver process even still alive?

Time to answer these questions. Create a new tab in Terminal (⌘ + T). Next, type the

following into the Terminal window:

pgrep debugserver

Provided LLDB has attached successfully and is running, you’ll receive an integer

output representing debugserver’s process ID, or PID, indicating debugserver is alive

and well and running on your computer.

Since debugserver is currently running, you can find out how debugserver was started.

Type the following:

ps -fp `pgrep -x debugserver`

Be sure to note that the above commands uses backticks, not single quotes, to make the

command work.

This will give you the full path to the location of debugserver, along with all arguments

used to launch this process.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 181

You’ll see something similar to the following:

/Applications/Xcode-beta.app/Contents/SharedFrameworks/LLDB.framework/
Resources/debugserver --native-regs --setsid --reverse-connect
127.0.0.1:59297

Cool! This probably makes you wonder how the functionality changes when you

subtract or modify certain launch arguments. For instance, what would happen if you

got rid of --reverse-connect 127.0.0.1:59297?

So which process launched debugserver? Type the following:

ps -o ppid= $(pgrep -x debugserver)

This will dump out the parent PID responsible for launching debugserver. You’ll get an

integer similar to the following:

82122

As always when working with PIDs, they will very likely be different on your computer

(and from run-to-run) than what you see here.

All right, numbers are interesting, but you’re dying to know the actual name associated

with this PID. You can get this information by executing the following in Terminal,

replacing the number with the PID you discovered in the previous step:

ps -a 82122

You’ll get the name, fullpath, and launch arguments of the process responsible for

launching debugserver:

PID TT STAT TIME COMMAND
82122 s000 S+ 0:05.35 /Applications/Xcode-beta.app/Contents/
Developer/usr/bin/lldb -n Finder

As you can see, LLDB was responsible for launching the debugserver process, which then

attached itself to Finder using the ptrace system call. Now you know where this call is

coming from, you can take a deeper dive into the function arguments passed into

ptrace.

ptrace arguments
You’re able to infer the process and arguments executed when ptrace was called.

Unfortunately, they’re just numbers, which are rather useless to you at the moment. It’s

time to make sense of these numbers using the <sys/ptrace.h> header file.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 182

To do this, you’ll use a macOS application to guide your understanding.

Open up the helloptrace application, which you’ll find in the resources folder for this

chapter. This is a macOS Terminal command application and is as barebones as they

come. All it does is launch then complete with no output to stdout at all.

The only thing of interest in this project is a bridging header used to import the ptrace

system call API into Swift.

Open main.swift and add the following code to the end of the file:

while true {
 sleep(2)
 print("helloptrace")
}

Next, position Xcode and the DTrace Terminal window so they are both visible on the

same screen.

Build and run the application. Once your app has launched and debugserver has

attached, observe the output generated by the DTrace script.

Take note of the DTrace Terminal window. Two new ptrace calls will happen when the

helloptrace process starts running. The output of the DTrace script will look similar to

this:

ptrace(14, 50121, 0, 0) from debugserver
ptrace(13, 50121, 5891, 0) from debugserver

Pause the application. At the time of writing, there’s a bug in Xcode that won’t retrieve

the proper documentation for ptrace. To work around this, try to use the Open Quickly

Xcode feature (⌘ + Shift + O) and type sys/ptrace.h.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 183

A look in ptrace.h gives the following function prototype for ptrace:

int ptrace(int _request, pid_t _pid, caddr_t _addr, int _data);

The first parameter is what you want ptrace to do. The second parameter is the PID you

want to act upon. The third and fourth parameters depend on the first parameter.

Take a look back at your earlier DTrace output. Your first line of output was something

similar to the following:

ptrace(14, 50121, 0, 0) from debugserver

Compare the first parameter to ptrace.h header and you’ll see the first parameter, 14,

actually stands for PT_ATTACHEXC. What does this PT_ATTACHEXC mean? To get

information about this parameter, open a Terminal window. Next, type man ptrace and

search for PT_ATTACHEXC.

Note: You can perform case-sensitive searches on man pages by pressing /,
followed by your search query. You can search downwards to the next hit by
pressing N or upwards to the previous hit by pressing Shift + N.

You’ll find some relevant info about PT_ATTACHEXC with the following output obtained

from the ptrace man page:

This request allows a process to gain control of an otherwise unrelated process and

begin tracing it. It does not need any cooperation from the to-be-traced process. In this

case, pid specifies the process ID of the to-be-traced process, and the other two

arguments are ignored.

With this information, the reason for the first call of ptrace should be clear. This call

says “hey, attach to this process”, and attaches to the process provided in the second

parameter.

Onto the next ptrace call from your DTrace output:

ptrace(13, 50121, 5891, 0) from debugserver

This one is a bit trickier to understand, since Apple decided to not give any man

documentation about this one. Er, thanks, Apple. This call relates to the internals of a

process attaching to another one.

If you look at the ptrace API header, 13 stands for PT_THUPDATE and relates to how the

controlling process, in this case, debugserver, handles UNIX signals and Mach messages

passed to the controlled process; in this case, helloptrace.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 184

The kernel needs to know how to handle signal passing from a process controlled by

another process, as in the Signals project from Section 1. The controlling process could

say it doesn’t want to send any signals to the controlled process.

This specific ptrace action is an implementation detail of how the Mach kernel handles

ptrace internally; there’s no need to dwell on it.

Fortunately, there are other documented signals definitely worth exploring through man.

One of them is the PT_DENY_ATTACH action, which you’ll learn about now.

Creating attachment issues
A process can actually specify it doesn’t want to be attached to by calling ptrace and

supplying the PT_DENY_ATTACH argument. This is often used as an anti-debugging

mechanism to prevent unwelcome reverse engineers from discovering a program’s

internals.

You’ll now experiment with this argument. Open main.swift and add the following line

of code before the while loop:

ptrace(PT_DENY_ATTACH, 0, nil, 0)

Build and run, keep on eye on the debugger console and see what happens.

The program will exit and output the following to the debugger console:

Program ended with exit code: 45

Note: You may need to open up the debug console by clicking View ▸ Debug Area

▸ Activate Console (or ⌘ + Shift + Y if you’re one of those cool, shortcut devs)
to see this.

This happened because Xcode launches the helloptrace program by default with LLDB

automatically attached. If you execute the ptrace function with PT_DENY_ATTACH, LLDB

will exit early and the program will stop executing.

If you were to try and execute the helloptrace program, and tried later to attach to it,

LLDB would fail in attaching and the helloptrace program would happily continue

execution, oblivious to debugserver’s attachment issues.

There are numerous macOS (and iOS) programs that perform this very action in their
production builds. However, it’s rather trivial to circumvent this security precaution.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 185

Ninja debug mode activated!

Getting around PT_DENY_ATTACH
Once a process executes ptrace with the PT_DENY_ATTACH argument, making an

attachment greatly escalates in complexity. However, there’s a much easier way of

getting around this problem.

Typically a developer will execute ptrace(PT_DENY_ATTACH, 0, 0, 0) somewhere in the

main executable’s code — oftentimes, right in the main function.

Since LLDB has the -w argument to wait for the launching of a process, you can use

LLDB to “catch” the launch of a process and perform logic to augment or ignore the

PT_DENY_ATTACH command before the process has a chance to execute ptrace!

Open a new Terminal window and type the following:

sudo lldb -n "helloptrace" -w

This starts an lldb session and attaches to the helloptrace program, but this time -w

tells lldb to wait until a new process with the name helloptrace has started.

You need to use sudo due to an ongoing bug with LLDB and macOS security when you

tell LLDB to wait for a Terminal program to launch.

In the Project Navigator, open the Products folder and right click on the helloptrace

executable. Next, select Show in Finder.

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 186

Next, drag the helloptrace executable into a new Terminal tab. Finally, press Enter to
start the executable.

Now, open the previously created Terminal tab, where you had LLDB sit and wait for the

helloptrace executable.

If everything went as expected, LLDB will see helloptrace has started and will launch

itself, attaching to this newly created helloptrace process.

In LLDB, create the following regex breakpoint to stop on any type of function

containing the word ptrace:

(lldb) rb ptrace -s libsystem_kernel.dylib

This will add a breakpoint on the userland gateway to the actual kernel ptrace function.

Next, type continue into the Terminal window.

(lldb) continue

You’ll break right before the ptrace function is about to be executed. However, you can

simply use LLDB to return early and not execute that function. Do that now like so:

(lldb) thread return 0

Next, simply just continue:

(lldb) continue

Although the program entered the ptrace userland gateway function, you told LLDB to

return early and not execute the logic that will execute the kernel ptrace system call.

Navigate to the helloptrace output tab and verify it’s outputting "helloptrace" over

and over. If so, you’ve successfully bypassed PT_DENY_ATTACH and are running LLDB

while still attached to the helloptrace command!

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 187

Other anti-debugging techniques
Since we’re on the topic of anti-debugging, let’s put iTunes on the spot: for the longest

time, iTunes actually used the ptrace’s PT_DENY_ATTACH. However, the current version of

iTunes (12.7.0 at the time of writing) has opted for a different technique to prevent

debugging.

iTunes will now check if it’s being debugged using the powerful sysctl function, then

kill itself if true. sysctl is another kernel function (like ptrace) that gets or sets kernel

values. iTunes repeatedly calls sysctl while it’s running using a NSTimer to call out to

the logic.

Below is a simplified code example in Swift of what iTunes is doing:

let mib = UnsafeMutablePointer<Int32>.allocate(capacity: 4)
mib[0] = CTL_KERN
mib[1] = KERN_PROC
mib[2] = KERN_PROC_PID
mib[3] = getpid()

var size: Int = MemoryLayout<kinfo_proc>.size
var info: kinfo_proc? = nil

sysctl(mib, 4, &info, &size, nil, 0)

if (info.unsafelyUnwrapped.kp_proc.p_flag & P_TRACED) > 0 {
 exit(1)
}

I am not going to go into the details of the expected params for sysctl yet, we’ll save

that for a different chapter. Just know that there is more than one way to skin a cat.

Where to go from here?
With the DTrace dumping script you used in this chapter, explore parts of your system

and see when ptrace is called.

If you’re feeling cocky, read up on the ptrace man pages and see if you can create a

program that will automatically attach itself to another program on your system.

Still have energy? Go man sysctl. That will be some good night-time reading.

Remember, having attachment issues is not always a bad thing!

Advanced Apple Debugging Chapter 13: Hello, Ptrace

raywenderlich.com 188

14
Chapter 14: Dynamic
Frameworks

If you’ve developed any type of Apple GUI software, you’ve definitely used dynamic

frameworks in your day-to-day development.

A dynamic framework is a bundle of code loaded into an executable at runtime, instead

of at compile time. Examples in iOS include UIKit and the Foundation frameworks.

Frameworks such as these contain a dynamic library and optionally assets, such as

images.

There are numerous advantages in electing to use dynamic frameworks instead of static

frameworks. The most obvious advantage is you can make updates to the framework

without having to recompile the executable that depends on the framework.

Imagine if, for every major or minor release of iOS, Apple said, "Hey y’all, we need to

update UIKit so if you could go ahead and update your app as well, that would be

grrrreat." There would be blood in the streets and the only competition would be

Android vs. Windows Phone!

raywenderlich.com 189

Why dynamic frameworks?
In addition to the positives of using dynamic frameworks, the kernel can map the

dynamic framework to multiple processes that depend on the framework. Take UIKit,

for example: it would be stupid and a waste of disk space if each running iOS app kept a

unique copy of UIKit resident in memory. Furthermore, there could be different

versions of UIKit compiled into each app, making it incredibly difficult to track down

bugs.

As of iOS 8, Apple decided to lift the dynamic library restriction and allow third-party

dynamic libraries to be included in your app. The most obvious advantage was that

developers could share frameworks across different iOS extensions, such as the Today

Extension and Action Extensions.

Today, all Apple platforms allow third party dynamic frameworks to be included without

rejection in the ever-so-lovely Apple Review process.

With dynamic frameworks comes a very interesting aspect of learning, debugging, and

reverse engineering. Since you’ve the ability to load the framework at runtime, you can

use LLDB to explore and execute code at runtime, which is great for spelunking in both

public and private frameworks.

Statically inspecting an executableʼs
frameworks
Compiled into each executable is a list of dynamic libraries (most often, frameworks),

expected to be loaded at runtime. This can be further broken down into a list of

required frameworks and a list of optional frameworks. The loading of these dynamic

libraries into memory is done using a special framework called the dynamic loader, or

dyld.

If a required framework fails to load, the dynamic library loader will kill the program. If

an optional framework fails to load, everything continues as usual, but code from that

library will obviously not be able to run!

You may have used the optional framework feature in the past, perhaps when your iOS

or Mac app needed to use code from a library added in a newer OS version than the

version targeted by your app. In such cases, you’d perform a runtime check around calls

to code in the optional library to check if the library was loaded.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 190

I spout tons of this theory stuff, but it’ll make more sense if you see it for yourself.

Open Xcode and create a new iOS project, Single View Application named DeleteMe.

Yep, this project won’t hang around for long, so feel free to remove it once you’re done

with this chapter. You’ll not write a line of code within the app (but within the load

commands is a different story). Make sure you choose Objective-C then click Next.

Note: You’re using Objective-C because there’s more going on under the hood in a
Swift app. At the time of writing, the Swift ABI is not finalized, so every method
Swift uses to bridge Objective-C uses a dynamic framework packaged into your
app to “jump the gap” to Objective-C. This means within the Swift bridging
frameworks are the corresponding dependencies to the proper Objective-C
Frameworks. For example, libswiftUIKit.dylib will have a required dependency on
the UIKit framework.

Click on the Xcode project at the top of the project navigator. Then click on the

DeleteMe target. Next, click on the Build Phases and open up the Link Binary With

Libraries.

Add the Social and CallKit framework. To the right of the CallKit framework, select

Optional from the drop-down. Ensure that the Social framework has the Required

value set as shown below.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 191

Build the project on the simulator using Cmd + B. Do not run just yet. Once the

project has been successfully built for the simulator, open the products directory in the

Xcode project navigator.

Right click on the produced executable, DeleteMe, and select Show in Finder.

Next, open up the DeleteMe IPA by right clicking the IPA and selecting Show Package

Contents.

Next, open a new Terminal window and type the following but don’t press Enter:

otool -L

Be sure to add a space at the end of the command. Next, drag the DeleteMe executable

from the Finder window into the Terminal window. When finished, you should have a

command that looks similar to the following:

otool -L /Users/derekselander/Library/Developer/Xcode/DerivedData/
DeleteMe-fqycokvgjilklcejwonxhuyxqlej/Build/Products/Debug-

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 192

iphonesimulator/DeleteMe.app/DeleteMe

Press Enter and observe the output. You’ll see something similar to the following:

/System/Library/Frameworks/CallKit.framework/CallKit (compatibility
version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/Social.framework/Social (compatibility version
1.0.0, current version 87.0.0)
/System/Library/Frameworks/Foundation.framework/Foundation (compatibility
version 300.0.0, current version 1349.13.0)
/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version
228.0.0)
/usr/lib/libSystem.dylib (compatibility version 1.0.0, current version
1238.0.0)
/System/Library/Frameworks/UIKit.framework/UIKit (compatibility version
1.0.0, current version 3600.6.21)

You found the compiled binary DeleteMe and dumped out the list of dynamic

frameworks it links to using the ever-so-awesome otool. Take note of the instructions

to CallKit and the Social framework you manually added earlier. By default, the

compiler automatically adds the “essential” frameworks to the iOS app, like UIKit and

Foundation.

Take note of the directory path responsible for loading these frameworks:

/System/Library/Frameworks/
/usr/lib/

Remember these directories; you’ll revisit them for a “eureka” moment later on.

Let’s go a tad bit deeper. Remember how you optionally required the CallKit

framework, and required the Social framework? You can view the results of these

decisions by using otool.

In Terminal, press the up arrow to recall the previous Terminal command. Next, change

the capital L to a lowercase l and press Enter. You’ll get a longer list of output that

shows all the load commands for the DeleteMe executable.

otool -l /Users/derekselander/Library/Developer/Xcode/DerivedData/
DeleteMe-fqycokvgjilklcejwonxhuyxqlej/Build/Products/Debug-
iphonesimulator/DeleteMe.app/DeleteMe

Search for load commands pertaining to CallKit by pressing Cmd + F and typing

CallKit. You’ll stumble across a load command similar to the following:

Load command 12
 cmd LC_LOAD_WEAK_DYLIB
 cmdsize 80
 name /System/Library/Frameworks/CallKit.framework/CallKit
(offset 24)

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 193

 time stamp 2 Wed Dec 31 17:00:02 1969
 current version 1.0.0
compatibility version 1.0.0

Next, search for the Social framework as well:

Load command 13
 cmd LC_LOAD_DYLIB
 cmdsize 80
 name /System/Library/Frameworks/Social.framework/Social (offset
24)
 time stamp 2 Wed Dec 31 17:00:02 1969
 current version 87.0.0
compatibility version 1.0.0

Compare the cmd in the load commands output. In CallKit, the load command is

LC_LOAD_WEAK_DYLIB, which represents an optional framework, while the LC_LOAD_DYLIB

of the Social load command indicates a required framework.

This is ideal for an application that supports multiple iOS versions. For example, if you

supported iOS 9 and up, you would strongly link the Social framework and weak link

the CallKit framework since it’s only available in iOS 10 and up.

Modifying the load commands
There’s a nice little command that lets you augment and add the framework load

commands named install_name_tool.

Open Xcode and build and run the application so the simulator is running DeleteMe.

Once running in the LLDB Terminal, verify the CallKit framework is loaded into the

DeleteMe address space. Pause the debugger, then type the following into LLDB:

(lldb) image list CallKit

If the CallKit module is correctly loaded into the process space, you’ll get output

similar to the following:

[0] 0484D8BA-5CB8-3DD3-8136-D8A96FB7E15B 0x0000000102d10000 /
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/System/
Library/Frameworks/CallKit.framework/CallKit

Time to hunt down where the DeleteMe application is running from. Open a new

Terminal window and type the following:

pgrep -fl DeleteMe

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 194

Provided DeleteMe is running, this will give you the full path of DeleteMe under the
simulator app. You’ll get output similar to the following:

61175 /Users/derekselander/Library/Developer/CoreSimulator/Devices/
D0576CB9-42E1-494B-B626-B4DB75411700/data/Containers/Bundle/Application/
474C8786-CC4F-4615-8BB0-8447DC9F82CA/DeleteMe.app/DeleteMe

You’ll now modify this executable’s load commands to point to a different framework.

Grab the fullpath to the DeleteMe executable.

Stop the execution of the DeleteMe executable and temporarily close Xcode. If you were

to accidentally build and run the DeleteMe application through Xcode at a later time, it

would undo any tweaks you’re about to make.

In the same Terminal window, paste the full path you received from the output of your

pgrep command along with the install_name_tool command as follows:

install_name_tool \
 /Users/derekselander/Library/Developer/CoreSimulator/Devices/
D0576CB9-42E1-494B-B626-B4DB75411700/data/Containers/Bundle/Application/
474C8786-CC4F-4615-8BB0-8447DC9F82CA/DeleteMe.app/DeleteMe

Before you execute this command, add the change argument along with the full path to

the CallKit framework and the new framework you want to replace it with. Just for

kicks, you’ll replace it with the NotificationCenter framework.

install_name_tool \
 -change \
 /System/Library/Frameworks/CallKit.framework/CallKit \
 /System/Library/Frameworks/NotificationCenter.framework/
NotificationCenter \
 /Users/derekselander/Library/Developer/CoreSimulator/Devices/
D0576CB9-42E1-494B-B626-B4DB75411700/data/Containers/Bundle/Application/
474C8786-CC4F-4615-8BB0-8447DC9F82CA/DeleteMe.app/DeleteMe

Verify if your changes were actually applied:

otool -L /Users/derekselander/Library/Developer/CoreSimulator/Devices/
D0576CB9-42E1-494B-B626-B4DB75411700/data/Containers/Bundle/Application/
474C8786-CC4F-4615-8BB0-8447DC9F82CA/DeleteMe.app/DeleteMe

If everything went smoothly, you’ll notice something different about the linked

frameworks now...

/System/Library/Frameworks/NotificationCenter.framework/
NotificationCenter (compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/Social.framework/Social (compatibility version
1.0.0, current version 87.0.0)
/System/Library/Frameworks/Foundation.framework/Foundation (compatibility
version 300.0.0, current version 1349.13.0)

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 195

/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version
228.0.0)
/usr/lib/libSystem.dylib (compatibility version 1.0.0, current version
1238.0.0)
/System/Library/Frameworks/UIKit.framework/UIKit (compatibility version
1.0.0, current version 3600.6.21)

Verify these changes exist at runtime.

You’re in a bit of a predicament here. If you were to build and run a new version of

DeleteMe using Xcode, it would erase these changes. Instead, launch the DeleteMe

application through the simulator and then attach to it in a new LLDB Terminal

window. To do this, launch DeleteMe in the simulator. Next, type the following into

Terminal:

lldb -n DeleteMe

In LLDB, check if the CallKit framework is still loaded.

(lldb) image list CallKit

You’ll get an error as output:

error: no modules found that match 'CallKit'

Can you guess what you’ll do next? Yep! Verify the NotificationCenter framework is

now loaded.

(lldb) image list NotificationCenter

Boom! You’ll get output similar to the following:

[0] 0FCE1DF5-7BAC-3195-94CB-C6100116FF99 0x000000010b8c7000 /
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/System/
Library/Frameworks/NotificationCenter.framework/NotificationCenter

Changing around frameworks (or adding them!) to an already compiled binary is cool,

but that took a little bit of work to set up. Fortunately, LLDB is wonderful for loading

frameworks in to a process at runtime, which is what you’ll do next. Keep that LLDB

Terminal session alive, because you’ll learn about a much easier way to load in

frameworks.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 196

Loading frameworks at runtime
Before you get into the fun of learning how to load and explore commands at runtime,

let me give you a command to help explore directories using LLDB. Start by adding the

following to your ~/.lldbinit file:

command regex ls 's/(.+)/po @import Foundation; [[NSFileManager
defaultManager] contentsOfDirectoryAtPath:@"%1" error:nil]/'

This creates a command named ls, which will take the directory path you give it and

dump out the contents. This command will work on the directory of the device that’s

being debugged. For example, since you’re running on the simulator on your computer’s

local drive it will dump that directory. If you were to run this on an attached iOS, tvOS

or other appleOS device, it would dump the directory you give it on that device, with

one minor caveat which you’ll learn about shortly.

Since LLDB is already running and attached to DeleteMe, you’ll need to load this

command into LLDB manually as well since LLDB has already read the ~/.lldbinit file.

Type the following into your LLDB session:

(lldb) command source ~/.lldbinit

This simply reloads your lldbinit file.

Next, find the full path to the frameworks directory in the simulator by typing the

following:

(lldb) image list -d UIKit

This will dump out the directory holding UIKit.

[0] /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk//System/
Library/Frameworks/UIKit.framework

You actually want to go one level higher to the Frameworks directory. Copy that full

directory path and use the new command ls that you just created, like so:

(lldb) ls /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk//System/
Library/Frameworks/

This will dump all the public frameworks available to the simulator. There are many

more frameworks to be found in different directories, but you’ll start here first.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 197

From the list of frameworks, load the Speech framework into the DeleteMe process

space like so:

(lldb) process load /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk//System/
Library/Frameworks/Speech.framework/Speech

LLDB will give you some happy output saying the Speech framework was loaded into

your process space. Yay!

Here’s something even cooler. By default, dyld will search a set of directories if it can’t

find the location of the framework. You don’t need to specify the full path to the

framework, just the framework library along with the framework’s name.

Try this out by loading the MessagesUI framework.

(lldb) process load MessageUI.framework/MessageUI

You’ll get the following output:

Loading "MessageUI.framework/MessageUI"...ok
Image 1 loaded.

Sweet.

Exploring frameworks
One of the foundations of reverse engineering is exploring dynamic frameworks. Since a

dynamic framework requires the code to compile the binary into a position

independent executable, you can still query a significant amount of information in the

dynamic framework — even when the compiler strips the framework of debugging

symbols. The binary needs to use position-independent code because the compiler

doesn’t know exactly where the code will reside in memory once dyld has done its

business.

Having solid knowledge of how an application interacts with a framework can also give

you insight into how the application works itself. For example, if a stripped application

is using a UITableView, I’ll set breakpoint queries in certain methods in UIKit to

determine what code is responsible for the UITableViewDataSource.

Often when I’m exploring a dynamic framework, I’ll simply load it into the processes

address space and start running various image lookup queries (or my custom LLDB

lookup command available at https://github.com/DerekSelander/lldb) to see what the

module holds.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 198

From there, I’ll execute various interesting methods that look like they’d be fun to play

around with.

If you jumped chapters and have that clueless face going on for the image lookup

command, check out Chapter 7, “Image”.

Here’s a nice little LLDB command regex you might want to stick into your ~/.lldbinit

file. It dumps Objective-C easily accessible class methods (i.e. Singletons) for

exploration.

Add the following to your ~/.lldbinit file.

command regex dump_stuff "s/(.+)/image lookup -rn '\+\[\w+(\(\w+\))?\ \w+
\]$' %1 /"

This command, dump_stuff, expects a framework or frameworks as input and will dump

Objective-C class methods that have zero arguments. This definitely isn’t a catch-all for

all Objective-C naming conventions, but is a nice, simple command to use for a quick

first pass when exploring a framework.

Load this command into the active LLDB session and then give it a go with the Social

framework.

(lldb) command source ~/.lldbinit
(lldb) dump_stuff Social

You might find some amusing methods to play around with in the output...

Here are some helpers to these methods that are definitely worth sticking in your

~/.lldbinit file as well:

command regex ivars 's/(.+)/expression -lobjc -O -- [%1
_ivarDescription]/'

This will dump all the ivars of a inherited NSObject instance.

command regex methods 's/(.+)/expression -lobjc -O -- [%1
_shortMethodDescription]/'

This will dump all the methods implemented by the inherited NSObject instance, or the

class of the NSObject.

command regex lmethods 's/(.+)/expression -lobjc -O -- [%1
_methodDescription]/'

This will recursively dump all the methods implemented by the inherited NSObject and

recursively continue on to its superclass.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 199

For example, you might choose to inspect an instance of the SLFacebookUpload class
like so:

(lldb) ivars [SLFacebookUpload new]
<SLFacebookUpload: 0x600000056320>:
in SLFacebookUpload:
 _uploadID (NSString*): nil
 _uploadType (long): 0
 _totalBytes (unsigned long): 0
 _transferredBytes (unsigned long): 0
in NSObject:
 isa (Class): SLFacebookUpload (isa, 0x103914078)

Or perhaps you’re just curious about what methods this class implements:

(lldb) methods SLFacebookUpload
<SLFacebookUpload: 0x10f75f078>:
in SLFacebookUpload:
 Class Methods:
 + (BOOL) supportsSecureCoding; (0x10f6e3b5b)
 Properties:
 @property (retain, nonatomic) NSString* uploadID; (@synthesize
uploadID = _uploadID;)
 ...
 @property (nonatomic) unsigned long transferredBytes;
(@synthesize transferredBytes = _transferredBytes;)
 Instance Methods:
 - (id) uploadID; (0x10f6e3b63)
 ...
 - (void) setTotalBytes:(unsigned long)arg1; (0x10f6e3bd3)
(NSObject ...)

Or get all the methods available through this class and superclasses:

(lldb) lmethods SLFacebookUpload
<SLFacebookUpload: 0x10f75f078>:
in SLFacebookUpload:
 Class Methods:
 + (BOOL) supportsSecureCoding; (0x10f6e3b5b)
 Properties:
 @property (retain, nonatomic) NSString* uploadID; (@synthesize
uploadID = _uploadID;)
 ...
 @property (nonatomic) unsigned long transferredBytes;
(@synthesize transferredBytes = _transferredBytes;)
 Instance Methods:
 - (id) uploadID; (0x10f6e3b63)
 ...
 - (void) setTotalBytes:(unsigned long)arg1; (0x10f6e3bd3)
in NSObject:
 Class Methods:
 + (id) CKSQLiteClassName; (0x126ecbb5e)
 ...
 + (BOOL) isFault; (0x10fd08a6d)
 Properties:
 @property (retain, nonatomic) NSArray* accessibilityCustomRotors;

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 200

 ...
 @property (readonly, copy) NSString* debugDescription;
 Instance Methods:
 - (id) mf_objectWithHighest:(^block)arg1; (0x126776a76)
 ...
 - (BOOL) isFault; (0x10fd08a70)

Note: You only explored the frameworks in the public frameworks directory
System/Library/Frameworks. There are many other fun frameworks to explore in
other subdirectories starting in System/Library.

Loading frameworks on an actual iOS
device
If you have a valid iOS developer account, an application you’ve written, and a device,

you can do the same thing you did on the simulator but on the device. The only

difference is the location of the System/Library path.

If you’re running an app on the simulator, the public frameworks directory will be

located at the following location:

/Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/System/
Library/Frameworks/

But some super-observant readers might say, “Wait a second, using otool -L on the

simulator gave us /System/Library/Frameworks as the absolute path, not that big long

path above. What gives?”

Remember how I said dyld searches a specific set of directories for these frameworks?

Well, there’s a special simulator-specific version named dyld_sim, which looks up the

proper simulator location. This is the correct path where these frameworks reside on an

actual iOS device.

So if you’re running on an actual iOS device, the frameworks path will be located at:

/System/Library/Frameworks/

But wait, I hear some others say, “What about sandboxing?”

The iOS kernel has different restrictions for different directory locations. In iOS 11 and

earlier, the /System/Library/ directory is readable by your process!

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 201

This makes sense because your process needs to call the appropriate public and private

frameworks from within the processes address space.

If the Sandbox restricted reading of these directories, then the app wouldn’t be able to

load them in and then the app would fail to launch.

You can try this out by getting Xcode up and running and attached to any one of your

iOS applications. While LLDB is attached to an iOS device, try running ls on the root

directory:

(lldb) ls /

Now try the /System/Library/ directory:

(lldb) ls /System/Library/

Some directories will fail to load. This is the kernel saying “Nope!” However, some

directories can be dumped.

You have the power to look at live frameworks and dynamically load them inside your

app so you can play with and explore them. There are some interesting and powerful

frameworks hidden in the /System/Library subdirectories for you to explore on your

iOS, tvOS or watchOS device.

Where to go from here?
That /System/Library directory is really something. You can spend a lot of time

exploring the different contents in that subdirectory. If you have an iOS device, go

explore it!

In this chapter you learned how to load and execute frameworks through LLDB.

However, you’ve been left somewhat high and dry for figuring out how to develop with

dynamically loaded private frameworks in code.

In the next two chapters, you’ll explore loading frameworks at runtime through code

using Objective-C’s method swizzling, as well as function interposition, which is a more

Swifty-style strategy for changing around methods at runtime.

This is especially useful if you were to pull in a private framework. I think it’s one of the

most exciting things about reverse engineering Apple software.

Advanced Apple Debugging Chapter 14: Dynamic Frameworks

raywenderlich.com 202

15
Chapter 15: Hooking &
Executing Code with dlopen &
dlsym

Using LLDB, you’ve seen how easy it is to create breakpoints and inspect things of

interest. You’ve also seen how to create classes you wouldn’t normally have access to.

You’ve been unable to wield this power at development time because you can’t get a

public API if the framework, or any of its classes or methods, are marked as private.

However, all that is about to change.

It’s time to learn about the complementary skills of developing with these frameworks.

In this chapter, you’re going to learn about methods and strategies to “hook” into Swift

and C code as well as execute methods you wouldn’t normally have access to.

This is a critical skill to have when you’re working with something such as a private

framework and want to execute or augment existing code within your own application.

To do this, you’re going to call on the help of two awesome and special functions:

dlopen and dlsym.

raywenderlich.com 203

The Objective-C runtime vs. Swift & C
Objective-C, thanks to its powerful runtime, is a truly dynamic language. Even when

compiled and running, not even the program knows what will happen when the next

objc_msgSend comes up.

There are different strategies for hooking into and executing Objective-C code; you’ll

explore these in the next chapter. This chapter focuses on how to hook into and use

these frameworks under Swift.

Swift acts a lot like C or C++. If it doesn’t need the dynamic dispatch of Objective-C, the

compiler doesn’t have to use it. This means when you’re looking at the assembly for a

Swift method that doesn’t need dynamic dispatch, the assembly can simply call the

address containing the method. This “direct” function calling is where the dlopen and

dlsym combo really shines. This is what you’re going to learn about in this chapter.

Setting up your project
For this chapter, you’re going to use a starter project named Watermark, located in the

starter folder.

This project is very simple. All it does is display a watermarked image in a UIImageView.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 204

However, there’s something special about this watermarked image. The actual image

displayed is hidden away in an array of bytes compiled into the program. That is, the

image is not bundled as a separate file inside the application. Rather, the image is

actually located within the executable itself. Clearly the author didn’t want to hand out

the original image, anticipating people would reverse engineer the Assets.car file,

which typically is a common place to hold images within an application.

First, you’ll explore hooking into a common C function. Once you’ve mastered the

concepts, you’ll execute a hidden function that’s unavailable to you at development

time thanks to the Swift compiler. Using dlopen and dlsym, you’ll be able to call and

execute a private method inside a framework with zero modifications to the

framework’s code.

Now that you’ve got more theory than you’ve ever wanted in an introduction, it’s finally

time to get started.

Easy mode: hooking C functions
When learning how to use the dlopen and dlsym functions, you’ll be going after the

getenv C function. This simple C function takes a char * (null terminated string) for

input and returns the environment variable for the parameter you supply.

This function is actually called quite a bit when your executable starts up.

Open and launch the Watermark project in Xcode. Create a new symbolic breakpoint,

putting getenv in the Symbol section. Next, add a custom action with the following:

po (char *)$rdi

Now, make sure the execution automatically continues after the breakpoint hits.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 205

Finally, build and run the application on the iPhone X Simulator, then watch the

console. You’ll get a slew of output indicating this method is called quite frequently.

It’ll look similar to the following:

"DYLD_INSERT_LIBRARIES"
"NSZombiesEnabled"
"OBJC_DEBUG_POOL_ALLOCATION"
"MallocStackLogging"
"MallocStackLoggingNoCompact"
"OBJC_DEBUG_MISSING_POOLS"
"LIBDISPATCH_DEBUG_QUEUE_INVERSIONS"
"LIBDISPATCH_CONTINUATION_ALLOCATOR"
... etc ...

Note: A far more elegant way to dump all environment variables available to your
application is to use the DYLD_PRINT_ENV. To set this up, go to Product\Manage

Scheme, and then add this in the Environment variables section. You can simply
add the name, DYLD_PRINT_ENV, with no value, to dump out all environment
variables at runtime.

However, an important point to note is all these calls to getenv are happening before

your executable has even started. You can verify this by putting a breakpoint on getenv

and looking at the stack trace. Notice main is nowhere in sight. This means you’ll not be

able to alter these function calls unless you declare an alternative getenv function

before dyld loads the frameworks.

Since C doesn’t use dynamic dispatch, hooking a function requires you to intercept the

function before it’s loaded. On the plus side, C functions are relatively easy to grab. All

you need is the name of the C function without any parameters along with the name of

the dynamic framework in which the C function is implemented.

However, since C is all-powerful and used pretty much everywhere, there are different

tactics of varying complexity you can explore to hook a C function. If you want to hook

a C function inside your own executable, that’s not a lot of work. However, if you want

to hook a function called before your code (main executable or frameworks) is loaded in

by dyld, the complexity definitely goes up a notch.

As soon as your executable executes main, it’s already imported all the dynamic
frameworks specified in the load commands, as you learned in the previous chapter. The
dynamic linker will recursively load frameworks in a depth-first manner. If you are call
an external framework, it can be lazily loaded or immediately loaded upon module load
by dyld. Typically, most external functions are lazily loaded unless you specify special
linker flags. With lazily loaded functions, the first time the function is called, a flurry of

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 206

activity occurs as dyld finds the module and location responsible for the function. This
value is then put into a specific section in memory (__DATA.__la_symbol_ptr, but we'll
talk about that later). Once the external function is resolved, all future calls to that
function will not need to be resolved by dyld.

This means if you want to have the function hooked before your application starts up,

you’ll need to create a dynamic framework to put the hooking logic in so it’ll be

available before the main function is called. You’ll explore this easy case of hooking a C

function inside your own executable first.

Back to the Watermarks project!

Open AppDelegate.swift, and replace

application(_:didFinishLaunchingWithOptions:) with the following:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {
 if let cString = getenv("HOME") {
 let homeEnv = String(cString: cString)
 print("HOME env: \(homeEnv)")
 }
 return true
}

This creates a call to getenv to get the HOME environment variable.

Next, remove the symbolic getenv breakpoint you previously created and build and run

the application.

The console output will look similar to the following:

HOME env: /Users/derekselander/Library/Developer/CoreSimulator/Devices/
D0576CB9-42E1-494B-B626-B4DB75411700/data/Containers/Data/Application/
AAC2D01C-045D-4384-B09E-1A83885D69FD

This is the HOME environment variable set for the Simulator you’re running on.

Say you wanted to hook the getenv function to act completely normally, but return

something different to the output above if and only if HOME is the parameter.

As mentioned earlier, you’ll need to create a framework that’s relied upon by the

Watermark executable to grab that address of getenv and change it before it’s resolved in

the main executable.

In Xcode, navigate to File ▸ New ▸ Target and select Cocoa Touch Framework.

Choose HookingC as the product name, and set the language to Objective-C.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 207

Once this new framework is created, create a new C file. In Xcode, select File\New\File,

then select C file. Name this file getenvhook. Uncheck the checkbox for Also create a

header file. Save the file with the rest of the project.

Make sure this file belongs to the HookingC framework that you’ve just created, and

not Watermark.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 208

Okay... you’re finally about to write some code... I swear.

Open getenvhook.c and replace its contents with the following:

#import <dlfcn.h>
#import <assert.h>
#import <stdio.h>
#import <dispatch/dispatch.h>
#import <string.h>

• dlfcn.h will be responsible for two very interesting functions: dlopen and dlsym.

• assert.h will test the library containing the real getenv is correctly loaded.

• stdio.h will be used temporarily for a C printf call.

• dispatch.h will be used to to properly set up the logic for GCD’s dispatch_once

function.

• string.h will be used for the strcmp function, which compares two C strings.

Next, redeclare the getenv function with the hard-coded stub shown below:

char * getenv(const char *name) {
 return "YAY!";
}

Finally, build and run your application to see what happens. You’ll get the following

output:

HOME env: YAY!

Awesome! You were able to successfully replace this method with your own function.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 209

However, this isn’t quite what you want. You want to call the original getenv function
and augment the return value if "HOME" is supplied as input.

What would happen if you tried to call the original getenv function inside your getenv

function? Try it out and see what happens. Add some temporary code so the getenv

looks like the following:

char * getenv(const char *name) {
 return getenv(name);
 return "YAY!";
}

Your program will... sort of... run and then eventually crash. This is because you’ve just

created a stack overflow. All references to the previously linked getenv have

disappeared now that you’ve created your own getenv fuction.

Undo that previous line of code. That idea won’t work. You’re going to need a different

tactic to grab the original getenv function.

First things first though, you need to figure out which library holds the getenv function.

Make sure that problematic line of code is removed, and build and run the application

again. Pause execution and bring up the LLDB console. Once the console pops up, enter

the following:

(lldb) image lookup -s getenv

You’ll get output looks similar to the following:

1 symbols match 'getenv' in /Users/derekselander/Library/Developer/Xcode/
DerivedData/Watermark-frqludlofnmrzcbjnkmuhgeuogmp/Build/Products/Debug-
iphonesimulator/Watermark.app/Frameworks/HookingC.framework/HookingC:
 Address: HookingC[0x0000000000000f60] (HookingC.__TEXT.__text +
0)
 Summary: HookingC`getenv at getenvhook.c:16
1 symbols match 'getenv' in /Applications/Xcode.app/Contents/Developer/
Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk//
usr/lib/system/libsystem_c.dylib:
 Address: libsystem_c.dylib[0x000000000005f1c4]
(libsystem_c.dylib.__TEXT.__text + 385956)
 Summary: libsystem_c.dylib`getenv

You’ll get two hits. One of them will be the getenv function you created yourself. More

importantly, you’ll get the location of the getenv function you actually care about. It

looks like this function is located in libsystem_c.dylib, and its full path is at /usr/lib/

system/libsystem_c.dylib. Remember, the simulator prepends that big long path to

these directories, but the dynamic linker is smart enough to search in the correct areas.

Everything after iPhoneSimulator.sdk is where this framework is actually stored on a

real iOS device.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 210

Now you know exactly where this function is loaded, it’s time to whip out the first of

the amazing “dl” duo, dlopen. Its function signature looks like the following:

extern void * dlopen(const char * __path, int __mode);

dlopen expects a fullpath in the form of a char * and a second parameter, which is a

mode expressed as an integer that determines how dlopen should load the module. If

successful, dlopen returns an opaque handle (a void *) ,or NULL if it fails.

After dlopen (hopefully) returns a reference to the module, you’ll use dlsym to get a

reference to the getenv function. dlsym has the following function signature:

extern void * dlsym(void * __handle, const char * __symbol);

dlsym expects to take the reference generated by dlopen as the first parameter and the

name of the function as the second parameter. If everything goes well, dlsym will return

the function address for the symbol specified in the second parameter or NULL if it

failed.

Replace your getenv function with the following:

char * getenv(const char *name) {
 void *handle = dlopen("/usr/lib/system/libsystem_c.dylib", RTLD_NOW);
 assert(handle);
 void *real_getenv = dlsym(handle, "getenv");
 printf("Real getenv: %p\nFake getenv: %p\n", real_getenv, getenv);
 return "YAY!";
}

You used the RTLD_NOW mode of dlopen to say, “Hey, don’t wait or do any cute lazy

loading stuff. Open this module right now.” After making sure the handle is not NULL

through a C assert, you call dlsym to get a handle on the “real” getenv.

Build and run the application. You’ll get output similar to the following:

Real getenv: 0x10d2451c4
Fake getenv: 0x10a8f7de0
2016-12-19 16:51:30.650 Watermark[1035:19708] HOME env: YAY!

Your function pointers will be different than my output, but take note of the difference

in address between the real and fake getenv.

You’re starting to see how you’ll go about this. However, you’ll need to make a few

touch-ups to the above code first. For example, you can cast function pointers to the

exact type of function you expect to use. Right now, the real_getenv function pointer is

void *, meaning it could be anything. You already know the function signature of

getenv, so you can simply cast it to that.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 211

Replace your getenv function one last time with the following:

char * getenv(const char *name) {
 static void *handle; // 1
 static char * (*real_getenv)(const char *); // 2

 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{ // 3
 handle = dlopen("/usr/lib/system/libsystem_c.dylib", RTLD_NOW);
 assert(handle);
 real_getenv = dlsym(handle, "getenv");
 });

 if (strcmp(name, "HOME") == 0) { // 4
 return "/";
 }

 return real_getenv(name); // 5
}

You might not be used to this amount of C code, so let’s break it down:

1. This creates a static variable named handle. It’s static so this variable will survive

the scope of the function. That is, this variable will not be erased when the function

exits, but you’ll only be able to access it inside the getenv function.

2. You’re doing the same thing here as you declare the real_getenv variable as static,

but you’ve made other changes to the real_getenv function pointer. You’ve cast this

function pointer to correctly match the signature of getenv. This will allow you to

call the real getenv function through the real_getenv variable. Cool, right?

3. You’re using GCD’s dispatch_once because you really only need to call the setup

once. This nicely complements the static variables you declared a couple lines

above. You don’t want to be doing the lookup logic every time your augmented

getenv runs!

4. You’re using C’s strcmp to see if you’re querying the "HOME" environment variable. If

it’s true, you’re simply returning "/" to signify the root directory. Essentially, you’re

overriding what the getenv function returns.

5. If "HOME" is not supplied as an input parameter, then just fall back on the default

getenv.

Find application(_:didFinishLaunchingWithOptions:) in AppDelegate.swift. Replace

this method with:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 212

 if let cString = getenv("HOME") {
 let homeEnv = String(cString: cString)
 print("HOME env: \(homeEnv)")
 }

 if let cString = getenv("PATH") {
 let homeEnv = String(cString: cString)
 print("PATH env: \(homeEnv)")
 }
 return true
}

Build and run the application. Provided everything went well, you’ll get output similar

to the following:

HOME env: /
PATH env: /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/usr/bin:/
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/bin:/
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/usr/sbin:/
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/sbin:/
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk/usr/local/bin

As you can see, your hooked getenv augmented the HOME environment variable, but

defaulted to the normal getenv for PATH.

Although annoying, it’s worth driving this point home yet again. If you called a UIKit

method, and UIKit calls getenv, your augmented getenv function will not get called

during this time because the getenv’s address had already been resolved when UIKit’s

code loaded.

In order to change around UIKit's call to getenv, you would need knowledge of the

indirect symbol table and to modify the getenv address stored in the

__DATA.__la_symbol_ptr section of the UIKit module. This is something you will learn

about in a later chapter.

Hard mode: hooking Swift methods
Going after Swift code that isn’t dynamic is a lot like going after C functions. However,

there are a couple of complications with this approach that make it a bit harder to hook

into Swift methods.

First off, Swift often uses classes or structs in typical development. This is a unique
challenge because dlsym will only give you a C function. You’ll need to augment this

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 213

function so the Swift method can reference self if you’re grabbing an instance method,
or reference the class if you’re calling a class method. When accessing a method that
belongs to a class, the assembly will often reference offsets of self or the class when
performing the method. Since dlysm will grab you a C-type function, you’ll need to
creatively utilize your knowledge of assembly, parameters and registers to turn that C
function into a Swift method.

The second issue you need to worry about is that Swift mangles the names of its

methods. The happy, pretty name you see in your code is actually a scary long name in

the module’s symbol table. You’ll need to find this method’s correct mangled name in

order to reference the Swift method through dlysm.

As you know, this project produces and displays a watermarked image. Here’s the

challenge for you: using only code, display the original image in the UIImageView.

You’re not allowed to use LLDB to execute the command yourself, nor are you allowed

to modify any contents in memory once the program is running.

Are you up for this challenge? Don’t worry, I’ll show you how it’s done!

First, open AppDelegate.swift and remove all the printing logic found inside

application(_:didFinishLaunchingWithOptions:). Next, open

CopyrightImageGenerator.swift.

Inside this class is a private computed property containing the originalImage. In

addition, there’s a public computed property containing the watermarkedImage. It’s this

method that calls the originalImage and superimposes the watermark. It’s up to you to

figure out a way to call this originalImage method, without changing the HookingSwift

dynamic library at all.

Open ViewController.swift and add the following code to the end of viewDidLoad():

if let handle = dlopen("", RTLD_NOW) {}

You’re using Swift this time, but you’ll use the same dlopen & dlsym trick you saw

earlier. You now need to get the correct location of the HookingSwift framework. The

nice thing about dlopen is you can supply relative paths instead of absolute paths.

Time to find where that framework is relative to the Watermark executable.

In Xcode, make sure the Project Navigator is visible (through Cmd + 1). Next, open the

Products directory and right-click the Watermark.app. Next, select Show in Finder.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 214

Once the Finder window pops up, right click the Watermark bundle and select Show

Package Contents. It’s in this directory the actual Watermark executable is located, so

you simply need to find the location of the HookingSwift framework’s executable

relative to this Watermark executable.

Next, select the Frameworks directory. Finally select the HookingSwift.framework.

Within this directory, you’ll come across the HookingSwift binary.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 215

This means you’ve found the relative path you can supply to dlopen. Modify the dlopen

function call you just added so it looks like the following:

if let handle = dlopen("./Frameworks/HookingSwift.framework/
HookingSwift", RTLD_NOW) {
}

Now to the hard part. You want to grab the name of the method responsible for the

originalImage property inside the CopyrightImageGenerator class. By now, you know

you can use the image lookup LLDB function to search for method name compiled into

an executable.

Since you know originalImage is implemented in Swift, use a “Swift style” type of

search with the image lookup command. Make sure the app is running, then type the

following into LLDB:

(lldb) image lookup -rn HookingSwift.*originalImage

You’ll get output similar to the following:

1 match found in /Users/derekselander/Library/Developer/Xcode/
DerivedData/Watermark-eztayvulqnjphfeqxjisvyqebwbz/Build/Products/Debug-
iphonesimulator/Watermark.app/Frameworks/HookingSwift.framework/
HookingSwift:
 Address: HookingSwift[0x00000000000013e0]
(HookingSwift.__TEXT.__text + 448)
 Summary: HookingSwift`HookingSwift.CopyrightImageGenerator.
(originalImage in _71AD57F3ABD678B113CF3AD05D01FF41).getter :
Swift.Optional<__ObjC.UIImage> at CopyrightImageGenerator.swift:36

In the output, search for the line containing Address:

HookingSwift[0x00000000000013e0]. This is where this method is implemented inside

the HookingSwift framework. This will likely be a different address for you.

For this particular example, the function is implemented at offset 0x00000000000013e0

inside the HookingSwift framework. Copy this address and enter the following

command into LLDB:

(lldb) image dump symtab -m HookingSwift

This dumps the symbol table of the HookingSwift framework. In addition to dumping

the symbol table, you’ve told LLDB to show the mangled names of the Swift functions.

Search for (Cmd + F) the address you just copied.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 216

You’ll get an address that matches the address you copied:

Here’s the line that interests you.

[6] 17 D X Code 0x00000000000013e0
0x00000000000000e0 0x000f0000
_T012HookingSwift23CopyrightImageGeneratorC08originalD033_71AD57F3ABD678B
113CF3AD05D01FF41LLSo7UIImageCSgfg

Yep, that huge angry alphanumeric chunk at the end is the Swift mangled function

name. It’s this monstrosity you’ll stick into dlsym to grab the address of the

originalImage getter method.

Open ViewController.swift and add the following code inside the if let you just

added:

let sym = dlsym(handle,
"_TFC12HookingSwift23CopyrightImageGeneratorgP33_71AD57F3ABD678B113CF3AD0
5D01FF4113originalImageGSqCSo7UIImage_")!
print("\(sym)")

You’ve opted for an implicitly unwrapped optional since you want the application to

crash if you got the wrong symbol name.

Build and run the application. If everything worked out, you’ll get a memory address at

the tail end of the console output (yours will likely be different):

0x0000000103105770

This address is the location to CopyrightImageGeneratorg’s originalImage method that

dlsym provided. You can verify this by creating a breakpoint on this address in LLDB:

(lldb) b 0x0000000103105770

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 217

LLDB creates a breakpoint on the following function:

Breakpoint 1: where = HookingSwift`HookingSwift.CopyrightImageGenerator.
(originalImage in _71AD57F3ABD678B113CF3AD05D01FF41).getter :
Swift.Optional<__ObjC.UIImage> at CopyrightImageGenerator.swift:35,
address = 0x0000000103105770

Great! You can bring up the address of this function at runtime, but how do you go

about calling it? Thankfully, you can use the typealias Swift keyword to cast functions

signatures.

Open ViewController.swift, and add the following directly under the print call you

just added:

typealias privateMethodAlias = @convention(c) (Any) -> UIImage? // 1
let originalImageFunction = unsafeBitCast(sym, to:
privateMethodAlias.self) // 2
let originalImage = originalImageFunction(imageGenerator) // 3
self.imageView.image = originalImage // 4

Here’s what this does:

1. This declares the type of function that is syntactically equivalent to the Swift

function for the originalImage property getter. There’s something very important

to notice here. privateMethodAlias is designed so it takes one parameter type of

Any, but the actual Swift function expects no parameters. Why is this?

It’s due to the fact that by looking at the assembly to this method, the reference to

self is expected in the RDI register. This means you need to supply the instance of

the class as the first parameter into the function to trick this C function into

thinking it’s a Swift method. If you don’t do this, there’s a chance the application

will crash!

2. Now you’ve made this new alias, you’re casting the sym address to this new type and

calling it originalImageFunction.

3. You’re executing the method and supplying the instance of the class as the first and

only parameter to the function. This will cause the RDI register to be properly set to

the instance of the class. It’ll return the original image without the watermark.

4. You’re assigning the UIImageView’s image to the original image without the

watermark.

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 218

With these new changes in, build and run the application. As expected, the original,

watermark-free image will now be displayed in the application.

Congratulations — you’ve discovered two new amazing functions and how to use them

properly. Grabbing the location of code at runtime is a powerful feature that lets you

access hidden code the compiler normally blocks from you. In addition, it lets you hook

into code so you can perform your own modifications at runtime.

Where to go from here?
You’re learning how to play around with dynamic frameworks. The previous chapter

showed you how to dynamically load them in LLDB. This chapter showed you how to

modify or execute Swift or C code you normally wouldn’t be able to. In the next chapter,

you’re going to play with the Objective-C runtime to dynamically load a framework and

use Objective-C’s dynamic dispatch to execute classes you don’t have the APIs for.

This is one of the most exciting features of reverse engineering — so get prepared, and

caffeinated, for your foray into the next chapter!

Advanced Apple Debugging Chapter 15: Hooking & Executing Code with dlopen & dlsym

raywenderlich.com 219

16
Chapter 16: Exploring and
Method Swizzling Objective-C
Frameworks

In the previous two chapters, you've explored dynamic loading as well as how to use the

dlopen and dlsym functions. So long as you knew the name of the function, it didn’t

matter if the compiler tried to hide a function from you.

You’ll cap off this round of dynamic framework exploration by digging into Objective-C

frameworks using the Objective-C runtime to hook and execute methods of interest.

For this chapter, you'll go after a series of private UIKit classes that help aid in visual

debugging. The chief of these private classes, UIDebuggingInformationOverlay was

introduced in iOS 9.0 and has received widespread attention in May 2017, thanks to an

article http://ryanipete.com/blog/ios/swift/objective-c/uidebugginginformationoverlay/

highlighting these classes and usage.

Unfortunately, as of iOS 11, Apple caught wind of developers accessing this class (likely

through the popularity of the above article) and has added several checks to ensure that

only internal apps that link to UIKit have access to these private debugging classes.

You’ll explore UIDebuggingInformationOverlay and learn why this class fails to work in

iOS 11, as well as explore avenues to get around these checks imposed by Apple by

writing to specific areas in memory first through LLDB. Then, you'll learn alternative

tactics you can use to enable UIDebuggingInformationOverlay through Objective-C's

method swizzling.

I specifically require you to use an iOS 11 Simulator for this chapter as Apple can

impose new checks on these classes in the future where I have no intention to "up the

ante" when they make this class harder to use or remove it from release UIKit builds

altogether.

raywenderlich.com 220

Between iOS 10 and 11
In iOS 9 & 10, setting up and displaying the overlay was rather trivial. In both these iOS

versions, the following LLDB commands were all that was needed:

(lldb) po [UIDebuggingInformationOverlay prepareDebuggingOverlay]
(lldb) po [[UIDebuggingInformationOverlay overlay] toggleVisibility]

This would produce the following overlay:

If you have an iOS 10 Simulator on your computer, I'd recommend you attach to any iOS

process and try the above LLDB commands out so you know what is expected.

Unfortunately, some things changed in iOS 11. Executing the exact same LLDB

commands in iOS 11 will produce nothing.

To understand what's happening, you need to explore the overriden methods

UIDebuggingInformationOverlay contains and wade into the assembly.

Use LLDB to attach to any iOS 11.x Simulator process, this can MobileSafari,

SpringBoard, any of the apps you've explored in the previous chapters, or your own

work. It doesn't matter if it's your own app or not, as you will be exploring assembly in

the UIKit module.

For this example, I'll launch the Photos application in the Simulator. Head on over to

Terminal, then type the following:

(lldb) lldb -n MobileSlideShow

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 221

Once you've attached to any iOS Simulator process, use LLDB to search for any
overriden methods by the UIDebuggingInformationOverlay class.

You can use the image lookup LLDB command:

(lldb) image lookup -rn UIDebuggingInformationOverlay

Or alternatively, use the methods command you created in Chapter 14, “Dynamic

Frameworks”:

(lldb) methods UIDebuggingInformationOverlay

If you decided to skip that chapter, the following command would be equivalent:

(lldb) exp -lobjc -O -- [UIDebuggingInformationOverlay
_shortMethodDescription]

Take note of the overridden init instance method found in the output of either

command.

You'll need to explore what this init is doing. You can follow along with LLDB's

disassemble command, but for visual clarity, I'll use my own custom LLDB

disassembler, dd, which outputs in color and is available here: https://github.com/

DerekSelander/lldb.

Here's the init method's assembly in iOS 10. If you want to follow along in black &

white in LLDB, type:

(lldb) disassemble -n "-[UIDebuggingInformationOverlay init]"

Again, this is showing the assembly of this method in iOS 10.

Colors (and dd's comments marked in green) make reading x64 assembly

soooooooooooo much easier. In pseudo-Objective-C code, this translates to the

following:

@implementation UIDebuggingInformationOverlay

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 222

- (instancetype)init {
 if (self = [super init]) {
 [self _setWindowControlsStatusBarOrientation:NO];
 }
 return self;
}

@end

Nice and simple for iOS 10. Let's look at the same method for iOS 11:

This roughly translates to the following:

@implementation UIDebuggingInformationOverlay

- (instancetype)init {
 static BOOL overlayEnabled = NO;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 overlayEnabled = UIDebuggingOverlayIsEnabled();
 });
 if (!overlayEnabled) {
 return nil;
 }

 if (self = [super init]) {
 [self _setWindowControlsStatusBarOrientation:NO];
 }
 return self;
}

@end

There are checks enforced in iOS 11 thanks to UIDebuggingOverlayIsEnabled() to

return nil if this code is not an internal Apple device.

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 223

You can verify these disappointing precautions yourself by typing the following in LLDB

on a iOS 11 Simulator:

(lldb) po [UIDebuggingInformationOverlay new]

This is a shorthand way of alloc/init'ing an UIDebuggingInformationOverlay. You'll

get nil.

With LLDB, disassemble the first 10 lines of assembly for -

[UIDebuggingInformationOverlay init]:

(lldb) disassemble -n "-[UIDebuggingInformationOverlay init]" -c10

Your assembly won't be color coded, but this is a small enough chunk to understand

what's going on.

Your output will look similar to:

UIKit`-[UIDebuggingInformationOverlay init]:
 0x10d80023e <+0>: push rbp
 0x10d80023f <+1>: mov rbp, rsp
 0x10d800242 <+4>: push r14
 0x10d800244 <+6>: push rbx
 0x10d800245 <+7>: sub rsp, 0x10
 0x10d800249 <+11>: mov rbx, rdi
 0x10d80024c <+14>: cmp qword ptr [rip + 0x9fae84], -0x1
 ; UIDebuggingOverlayIsEnabled.__overlayIsEnabled + 7

 0x10d800254 <+22>: jne 0x10d8002c0 ; <+130>
 0x10d800256 <+24>: cmp byte ptr [rip + 0x9fae73], 0x0
 ; mainHandler.onceToken + 7

 0x10d80025d <+31>: je 0x10d8002a8 ; <+106>

Pay close attention to offset 14 and 22:

 0x10d80024c <+14>: cmp qword ptr [rip + 0x9fae84], -0x1
 ; UIDebuggingOverlayIsEnabled.__overlayIsEnabled + 7

 0x10d800254 <+22>: jne 0x10d8002c0 ; <+130>

Thankfully, Apple includes the DWARF debugging information with their frameworks,

so we can see what symbols they are using to access certain memory addresses.

Take note of the UIDebuggingOverlayIsEnabled.__overlayIsEnabled + 7 comment in
the disassembly. I actually find it rather annoying that LLDB does this and would
consider this a bug. Instead of correctly referencing a symbol in memory, LLDB will
reference the previous value in its comments and add a + 7. The value at
UIDebuggingOverlayIsEnabled.__overlayIsEnabled + 7 is what we want, but the
comment is not helpful, because it has the name of the wrong symbol in its

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 224

disassembly. This is why I often choose to use my dd command over LLDB’s, since I
check for this off-by one error and replace it with my own comment.

But regardless of the incorrect name LLDB is choosing in its comments, this address is

being compared to -1 (aka 0xffffffffffffffff in a 64-bit process) and jumps to a

specific address if this address doesn't contain -1. Oh... and now that we're on the

subject, dispatch_once_t variables start out as 0 (as they are likely static) and get set

to -1 once a dispatch_once block completes (hint, hint).

Yes, this first check in memory is seeing if code should be executed in a dispatch_once

block. You want the dispatch_once logic to be skipped, so you'll set this value in

memory to -1.

From the assembly above, you have two options to obtain the memory address of

interest:

1. You can combine the RIP instruction pointer with the offset to get the load address.

In my assembly, I can see this address is located at [rip + 0x9fae84]. Remember,

the RIP register will resolve to the next row of assembly since the program counter

increments, then executes an instruction.

This means that [rip + 0x9fae84] will resolve to [0x10d800254 + 0x9fae84] in my

case. This will then resolve to 0x000000010e1fb0d8, the memory address guarding the

overlay from being initialized.

2. You can use LLDB's image lookup command with the verbose and symbol option to

find the load address for UIDebuggingOverlayIsEnabled.__overlayIsEnabled.

(lldb) image lookup -vs UIDebuggingOverlayIsEnabled.__overlayIsEnabled

From the output, look for the range field for the end address. Again, this is due to

LLDB not giving you the correct symbol. For my process, I got range =

[0x000000010e1fb0d0-0x000000010e1fb0d8). This means the byte of interest for me is

located at: 0x000000010e1fb0d8. If I wanted to know the symbol this address is actually

referring to, I can type:

(lldb) image lookup -a 0x000000010e1fb0d8

Which will then output:

Address: UIKit[0x00000000015b00d8] (UIKit.__DATA.__bss + 24824)
Summary: UIKit`UIDebuggingOverlayIsEnabled.onceToken

This UIDebuggingOverlayIsEnabled.onceToken is the correct name of the symbol you

want to go after.

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 225

Bypassing checks by changing memory
We now know the exact bytes where this Boolean check occurs.

Let's first see what value this has:

(lldb) x/gx 0x000000010e1fb0d8

This will dump out 8 bytes in hex located at 0x000000010e1fb0d8 (your address will be

different). If you've executed the po [UIDebuggingInformationOverlay new] command

earlier, you'll see -1; if you haven't, you'll see 0.

Let's change this. In LLDB type:

(lldb) mem write 0x000000010e1fb0d8 0xffffffffffffffff -s 8

The -s option specifies the amount of bytes to write to. If typing out 16 f's is

unappealing to you, there's always alternatives to complete the same task. For example,

the following would be equivalent:

(lldb) po *(long *)0x000000010e1fb0d0 = -1

You can of course verify your work be just examining the memory again.

(lldb) x/gx 0x000000010e1fb0d8

The output should be 0xffffffffffffffff now.

Your turn
I just showed you how to knock out the initial check for

UIDebuggingOverlayIsEnabled.onceToken to make the dispatch_once block think it has

already run, but there's one more check that will hinder your process.

Re-run the disassemble command you typed earlier:

(lldb) disassemble -n "-[UIDebuggingInformationOverlay init]" -c10

At the very bottom of output are these two lines:

0x10d800256 <+24>: cmp byte ptr [rip + 0x9fae73], 0x0
 ; mainHandler.onceToken + 7
0x10d80025d <+31>: je 0x10d8002a8 ; <+106>

This mainHandler.onceToken is again, the wrong symbol; you care about the symbol
immediately following it in memory. I want you to perform the same actions you did on
UIDebuggingOverlayIsEnabled.__overlayIsEnabled, but instead apply it to the memory

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 226

address pointed to by the mainHandler.onceToken symbol. Once you perform the RIP
arithmetic, referencing mainHandler.onceToken, you'll realize the correct symbol,
UIDebuggingOverlayIsEnabled.__overlayIsEnabled, is the symbol you are after.

You first need to the find the location of mainHandler.onceToken in memory. You can

either perform the RIP arithmetic from the above assembly or use image lookup -vs

mainHandler.onceToken to find the end location. Once you found the memory address,

write a -1 value into this memory address.

Verifying your work
Now that you've successfully written a -1 value to mainHandler.onceToken, it's time to

check your work to see if any changes you've made have bypassed the initialization

checks.

In LLDB type:

(lldb) po [UIDebuggingInformationOverlay new]

Provided you correctly augmented the memory, you'll be greeted with some more

cheery output:

<UIDebuggingInformationOverlay: 0x7fb622107860; frame = (0 0; 768 1024);
hidden = YES; gestureRecognizers = <NSArray: 0x60400005aac0>; layer =
<UIWindowLayer: 0x6040000298a0>>

And while you're at it, make sure the class method overlay returns a valid instance:

(lldb) po [UIDebuggingInformationOverlay overlay]

If you got nil for either of the above LLDB commands, make sure you have augmented

the correct addresses in memory. If you're absolutely sure you have augmented the

correct addresses and you still get a nil return value, make sure you're running either

the iOS 11.0-11.1 Simulator as Apple could have added additional checks to prevent

this from working in a version since this book was written!

If all goes well, and you have a valid instance, let's put this thing on the screen!

In LLDB, type:

(lldb) po [[UIDebuggingInformationOverlay overlay] toggleVisibility]

Then resume the process:

(lldb) continue

Alright... we got something on the screen, but it's blank!?

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 227

Sidestepping checks in
prepareDebuggingOverlay
The UIDebuggingInformationOverlay is blank because we didn't call the class method, +
[UIDebuggingInformationOverlay prepareDebuggingOverlay]

Dumping the assembly for this method, we can see one concerning check immediately:

Offsets 14, 19, and 21. Call a function named _UIGetDebuggingOverlayEnabled test if AL

(RAX's single byte cousin) is 0. If yes, jump to the end of this function. The logic in this

function is gated by the return value of _UIGetDebuggingOverlayEnabled.

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 228

Since we are still using LLDB to build a POC, let's set a breakpoint on this function, step

out of _UIGetDebuggingOverlayEnabled, then augment the value stored in the AL

register before the check in offset 19 occurs.

Create a breakpoint on _UIGetDebuggingOverlayEnabled:

(lldb) b _UIGetDebuggingOverlayEnabled

LLDB will indicate that it's successfully created a breakpoint on the

_UIGetDebuggingOverlayEnabled method.

Now, let's execute the [UIDebuggingInformationOverlay prepareDebuggingOverlay]

method, but have LLDB honor breakpoints. Type the following:

(lldb) exp -i0 -O -- [UIDebuggingInformationOverlay
prepareDebuggingOverlay]

This uses the -i option that determines if LLDB should ignore breakpoints. You're

specifying 0 to say that LLDB shouldn't ignore any breakpoints.

Provided all went well, execution will start in the prepareDebuggingOverlay method and

call out to the _UIGetDebuggingOverlayEnabled where execution will stop.

Let's just tell LLDB to resume execution until it steps out of this

_UIGetDebuggingOverlayEnabled function:

(lldb) finish

Control flow will finish up in _UIGetDebuggingOverlayEnabled and we'll be back in the

prepareDebuggingOverlay method, right before the test of the AL register on offset 19:

UIKit`+[UIDebuggingInformationOverlay prepareDebuggingOverlay]:
 0x11191a312 <+0>: push rbp
 0x11191a313 <+1>: mov rbp, rsp
 0x11191a316 <+4>: push r15
 0x11191a318 <+6>: push r14
 0x11191a31a <+8>: push r13
 0x11191a31c <+10>: push r12
 0x11191a31e <+12>: push rbx
 0x11191a31f <+13>: push rax
 0x11191a320 <+14>: call 0x11191b2bf
 ; _UIGetDebuggingOverlayEnabled

-> 0x11191a325 <+19>: test al, al
 0x11191a327 <+21>: je 0x11191a430 ; <+286>
 0x11191a32d <+27>: lea rax, [rip + 0x9fc19c] ; UIApp

Through LLDB, print out the value in the AL register:

(lldb) p/x $al

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 229

Unless you work at a specific fruit company inside a fancy new “spaceship” campus,

you'll likely get 0x00.

Change this around to 0xff:

(lldb) po $al = 0xff

Let's verify this worked by single instruction stepping:

(lldb) si

This will get you onto the following line:

 je 0x11191a430 ; <+286>

If AL was 0x0 at the time of the test assembly instruction, this will move you to offset

286. If AL wasn't 0x0 at the time of the test instruction, you'll keep on executing

without the conditional jmp instruction.

Make sure this succeeded by performing one more instruction step.

(lldb) si

If you're on offset 286, this has failed and you'll need to repeat the process. However, if

you find the instruction pointer has not conditionally jumped, then this has worked!

There's nothing more you need to do now, so resume execution in LLDB:

(lldb) continue

So, what did the logic do exactly in +[UIDebuggingInformationOverlay

prepareDebuggingOverlay]?

To help ease the visual burden, here is a rough translation of what the +

[UIDebuggingInformationOverlay prepareDebuggingOverlay] method is doing:

+ (void)prepareDebuggingOverlay {
 if (_UIGetDebuggingOverlayEnabled()) {
 id handler = [UIDebuggingInformationOverlayInvokeGestureHandler
mainHandler];
 UITapGestureRecognizer *tapGesture = [[UITapGestureRecognizer alloc]
initWithTarget:handler action:@selector(_handleActivationGesture:)];
 [tapGesture setNumberOfTouchesRequired:2];
 [tapGesture setNumberOfTapsRequired:1];
 [tapGesture setDelegate:handler];

 UIView *statusBarWindow = [UIApp statusBarWindow];
 [statusBarWindow addGestureRecognizer:tapGesture];
 }
}

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 230

This is interesting: There is logic to handle a two finger tap on UIApp's
statusBarWindow. Once that happens, a method called _handleActivationGesture: will
be executed on a UIDebuggingInformationOverlayInvokeGestureHandler singleton,
mainHandler.

That makes you wonder what's the logic in -

[UIDebuggingInformationOverlayInvokeGestureHandler _handleActivationGesture:]

is for?

A quick assembly dump using dd brings up an interesting area:

The UITapGestureRecognizer instance passed in by the RDI register (which you learned

about in Chapter 10, “Assembly Register Calling Convention”), is getting the state

compared to the value 0x3 (see offset 30). If it is 3, then control continues, while if it's

not 3, control jumps towards the end of the function.

A quick lookup in the header file for UIGestureRecognizer, tells us the state has the

following enum values:

typedef NS_ENUM(NSInteger, UIGestureRecognizerState) {
 UIGestureRecognizerStatePossible,
 UIGestureRecognizerStateBegan,
 UIGestureRecognizerStateChanged,
 UIGestureRecognizerStateEnded,
 UIGestureRecognizerStateCancelled,
 UIGestureRecognizerStateFailed,
 UIGestureRecognizerStateRecognized = UIGestureRecognizerStateEnded
};

Counting from 0, we can see control will only execute the bulk of the code if the

UITapGestureRecognizer's state is equal to UIGestureRecognizerStateEnded.

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 231

So what does this mean exactly? Not only did UIKit developers put restrictions on

accessing the UIDebuggingInformationOverlay class (which you've already modified in

memory), they've also added a “secret” UITapGestureRecognizer to the status bar

window that executes the setup logic only when you complete a two finger tap on it.

How cool is that?

So, recapping...
Before we try this thing out, let's quickly recap what you did just in case you need to

restart fresh:

You found the memory address of UIDebuggingOverlayIsEnabled.onceToken:

(lldb) image lookup -vs UIDebuggingOverlayIsEnabled.onceToken

And then set it to -1 via LLDB's memory write or just casting the address to a long

pointer and setting the value to -1 like so:

(lldb) po *(long *)0x000000010e1fb0d0 = -1

You also performed the same action for

UIDebuggingOverlayIsEnabled.__overlayIsEnabled.

You then created a breakpoint on _UIGetDebuggingOverlayEnabled(), executed the +

[UIDebuggingInformationOverlay prepareDebuggingOverlay] command and changed

the return value that _UIGetDebuggingOverlayEnabled() produced so the rest of the

method could continue to execute.

This was one of the many ways to bypass Apple's new iOS 11 checks to prevent you from

using these classes.

Trying this out
Since you're using the Simulator, this means you need to hold down Option on the

keyboard to simulate two touches. Once you get the two touches parallel, hold down the

Shift key to drag the tap circles around the screen. Position the tap circles on the status

bar of your application, and then click.

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 232

You'll be greeted with the fully functional UIDebuggingInformationOverlay!

Introducing Method Swizzling
Reflecting, how long did that take? In addition, we have to manually set this through

LLDB everytime UIKit gets loaded into a process. Finding and setting these values in

memory can definitely be done through a custom LLDB script, but there's an elegant

alternative using Objective-C's method swizzling.

But before diving into how, let's talk about the what.

Method swizzling is the process of dynamically changing what an Objective-C method

does at runtime. Compiled code in the __TEXT section of a binary can’t be modified

(well, it can with the proper entitlements that Apple will not give you, but we won't get

into that). However, when executing Objective-C code, we know objc_msgSend comes

into play thanks to Chapter 10. In case you forgot, objc_msgSend will take an instance

(or class), a Selector and a variable number of arguments and jump to the location of

the function.

Method swizzling has many uses, but oftentimes people use this tactic to modify a

parameter or return value. Alternatively, they can snoop and see when a function is

executing code without searching for references in assembly. In fact, Apple even

(precariously) uses method swizzling in it's own codebase like KVO!

Since the internet is full of great references on method swizzling, I won't start at square

one (but if you want to, I'd say http://nshipster.com/method-swizzling/ has the clearest

and cleanest discussion of it). Instead, we'll start with the basic example, then quickly

ramp up to something I haven't seen anyone do with method swizzling: use it to jump

into an offset of a method to avoid any unwanted checks!

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 233

Finally onto a sample project
Included in this chapter is an sample project called Overlay and it's quite minimal. It

only has a UIButton smack in the middle that executes the expected logic to display the

UIDebuggingInformationOverlay.

You'll build an Objective-C NSObject category to perform the Objective-C swizzling on

the code of interest as soon as the module loads, using the Objective-C-only load class

method.

Build and run the project. Tap on the lovely UIButton. You'll only get some angry output

from stderr saying:

UIDebuggingInformationOverlay 'overlay' method returned nil

As you already know, this is because of the short-circuited overriden init method for

UIDebuggingInformationOverlay.

Let's knock out this easy swizzle first; open

NSObject+UIDebuggingInformationOverlayInjector.m. Jump to Section 1, marked

by a pragma. In this section, add the following Objective-C class:

//**/
#pragma mark - Section 1 - FakeWindowClass
//**/

@interface FakeWindowClass : UIWindow
@end

@implementation FakeWindowClass

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 234

- (instancetype)initSwizzled
{
 if (self= [super init]) {
 [self _setWindowControlsStatusBarOrientation:NO];
 }
 return self;
}

@end

For this part, you declared an Objective-C class named FakeWindowClass, which is a

subclass of a UIWindow. Unfortunately, this code will not compile since

_setWindowControlsStatusBarOrientation: is a private method.

Jump up to section 0 and forward declare this private method.

//**/
#pragma mark - Section 0 - Private Declarations
//**/

@interface NSObject()
- (void)_setWindowControlsStatusBarOrientation:(BOOL)orientation;
@end

This will quiet the compiler and let the code build. The

UIDebuggingInformationOverlay's init method has checks to return nil. Since the init

method was rather simple, you just completely sidestepped this logic and

reimplemented it yourself and removed all the “bad stuff”!

Now, replace the code for UIDebuggingInformationOverlay's init with

FakeWindowClass's initSwizzled method. Jump down to section 2 in NSObject's load

method and replace the load method with the following:

+ (void)load
{
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 Class cls = NSClassFromString(@"UIDebuggingInformationOverlay");
 NSAssert(cls, @"DBG Class is nil?");

 // Swizzle code here

 [FakeWindowClass swizzleOriginalSelector:@selector(init)
 withSizzledSelector:@selector(initSwizzled)
 forClass:cls
 isClassMethod:NO];
 });
}

Rerun and build the Overlay app with this new code. Tap on the UIButton to see what

happens now that you've replaced the init to produce a valid instance.

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 235

UIDebuggingInformationOverlay now pops up without any content. Almost there!

The final push
You're about to build the final snippet of code for the soon-to-be-replacement method

of prepareDebuggingOverlay. prepareDebuggingOverlay had an initial check at the

beginning of the method to see if _UIGetDebuggingOverlayEnabled() returned 0x0 or

0x1. If this method returned 0x0, then control jumped to the end of the function.

In order to get around this, you'll replicate the same actions you observed in Chapter

12, “Assembly and the Stack” for x86 assembly. That is, you'll “simulate” a call

instruction by pushing a return address onto the stack, but instead of call'ing, you'll

jmp into an offset past the _UIGetDebuggingOverlayEnabled check. That way, you can

perform the function proglogue in your stack frame and directly skip the dreaded check

in the beginning of prepareDebuggingOverlay.

In NSObject+UIDebuggingInformationOverlayInjector.m, Navigate down to Section

3 - prepareDebuggingOverlay, and add the following snippet of code:

+ (void)prepareDebuggingOverlaySwizzled {
 Class cls = NSClassFromString(@"UIDebuggingInformationOverlay");
 SEL sel = @selector(prepareDebuggingOverlaySwizzled);
 Method m = class_getClassMethod(cls, sel);
 IMP imp = method_getImplementation(m); // 1

 void (*methodOffset) = (void *)((imp + (long)27)); // 2
 void *returnAddr = &&RETURNADDRESS; // 3

 // You'll add some assembly here in a sec

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 236

 RETURNADDRESS: ; // 4
}

Let's break this crazy witchcraft down:

1. I want to get the starting address of the original prepareDebuggingOverlay.

However, I know this will be swizzled code, so when this code executes,

prepareDebuggingOverlaySwizzled will actually point to the real,

prepareDebuggingOverlay starting address.

2. I take the starting address of the original prepareDebuggingOverlay (given to me

through the imp variable) and I offset the value in memory past the

_UIGetDebuggingOverlayEnabled() check. I used LLDB to figure the exact offset by

dumping the assembly and calculating the offset (disassemble -n "+

[UIDebuggingInformationOverlay prepareDebuggingOverlay]"). This is insanely

brittle as any new code or compiler changes from clang will likely break this. I

strongly recommend you calculate this yourself in case this changes past iOS 11.1.1.

3. Since you are faking a function call, you need an address to return to after this

soon-to-be-executed function offset finishes. This is accomplished by getting the

address of a declared label. Labels are a not often used feature by normal developers

which allow you to jmp to different areas of a function. The use of labels in modern

programming is considered bad practice as if/for/while loops can accomplish the

same thing... but not for this crazy hack.

4. This is the declaration of the label RETURNADDRESS. No, you do need that semicolon

after the label as the C syntax for a label to have a statement immediately following

it.

Time to cap this bad boy off with some sweet inline assembly! Right above the label

RETURNADDRESS declaration, add the following inline assembly:

+ (void)prepareDebuggingOverlaySwizzled {
 Class cls = NSClassFromString(@"UIDebuggingInformationOverlay");
 SEL sel = @selector(prepareDebuggingOverlaySwizzled);
 Method m = class_getClassMethod(cls, sel);

 IMP imp = method_getImplementation(m);
 void (*methodOffset) = (void *)((imp + (long)27));
 void *returnAddr = &&RETURNADDRESS;

 __asm__ __volatile__(// 1
 "pushq %0\n\t" // 2
 "pushq %%rbp\n\t" // 3
 "movq %%rsp, %%rbp\n\t"
 "pushq %%r15\n\t"
 "pushq %%r14\n\t"
 "pushq %%r13\n\t"

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 237

 "pushq %%r12\n\t"
 "pushq %%rbx\n\t"
 "pushq %%rax\n\t"
 "jmp *%1\n\t" // 4
 :
 : "r" (returnAddr), "r" (methodOffset)); // 5

 RETURNADDRESS: ; // 5
}

1. Don't be scared, you're about to write x86_64 assembly in AT&T format (Apple's

assembler is not a fan of Intel). That __volatile__ is there to hint to the compiler to

not try and optimize this away.

2. You can think of this sort of like C's printf where the %0 will be replaced by the

value supplied by the returnAddr. In x86, the return address is pushed onto the

stack right before entering a function. As you know, returnAddr points to an

executable address following this assembly. This is how we are faking an actual

function call!

3. The following assembly is copy pasted from the function prologue in the +

[UIDebuggingInformationOverlay prepareDebuggingOverlay]. This lets us perform

the setup of the function, but allows us to skip the dreaded check.

4. Finally we are jumping to offset 27 of the prepareDebuggingOverlay after we have

set up all the data and stack information we need to not crash. The jmp *%1 will get

resolved to jmp'ing to the value stored at methodOffset. Finally, what are those "r"

strings? I won't get too into the details of inline assembly as I think your head

might explode with an information overload (think Scanners), but just know that

this is telling the assembler that your assembly can use any register for reading

these values.

Jump back up to section 2 where the swizzling is performed in the +load method and

add the following line of code to the end of the method:

[self swizzleOriginalSelector:@selector(prepareDebuggingOverlay)
 withSizzledSelector:@selector(prepareDebuggingOverlaySwizzled)
 forClass:cls
 isClassMethod:YES];

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 238

Build and run. Tap on the UIButton to execute the required code to setup the

UIDebuggingInformationOverlay class, then perform the two-finger tap on the status

bar.

Omagerd, can you believe that worked?

I am definitely a fan of the hidden status bar dual tap thing, but let's say you wanted to

bring this up solely from code. Here's what you can do:

Open ViewController.swift. At the top of the file add:

import UIKit.UIGestureRecognizerSubclass

This will let you set the state of a UIGestureRecognizer (default headers allow only

read-only access to the state variable).

Once that's done, augment the code in overlayButtonTapped(_ sender: Any) to be the

following:

@IBAction func overlayButtonTapped(_ sender: Any) {
 guard
 let cls = NSClassFromString("UIDebuggingInformationOverlay") as?
UIWindow.Type else {
 print("UIDebuggingInformationOverlay class doesn't exist!")
 return
 }
 cls.perform(NSSelectorFromString("prepareDebuggingOverlay"))

 let tapGesture = UITapGestureRecognizer()
 tapGesture.state = .ended

 let handlerCls =
NSClassFromString("UIDebuggingInformationOverlayInvokeGestureHandler")
as! NSObject.Type
 let handler = handlerCls
 .perform(NSSelectorFromString("mainHandler"))
 .takeUnretainedValue()
 let _ = handler

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 239

 .perform(NSSelectorFromString("_handleActivationGesture:"),
 with: tapGesture)
}

Final build and run. Tap on the button and see what happens.

Boom.

Where to go from here?
Crazy chapter, eh? In this chapter, you spelunked into memory and changed

dispatch_once_t tokens as well as Booleans in memory to build a POC

UIDebuggingInformationOverlay that's compatible with iOS 11 while getting around

Apple's newly introduced checks to prevent you from using this class.

Then you used Objective-C's method swizzling to perform the same actions as well as

hook into only a portion of the original method, bypassing several short-circuit checks.

This is why reverse engineering Objective-C is so much fun, because you can hook into

methods that are quietly called in private code you don’t have the source for and make

changes or monitor what it’s doing.

Still have energy after that brutal chapter? This swizzled code will not work on an

ARM64 device. You'll need to look at the assembly and perform an alernative action for

that architecture likely through a preprocessor macro.

Oh, and remember how I said that UIDebuggingInformationOverlay can totally be made

into an LLDB script that's compatible on both the Simulator and an actual device on iOS

11? Well, here it is:

https://github.com/DerekSelander/LLDB/blob/master/lldb_commands/overlaydbg.py

Mic drop.

Enjoy!

Advanced Apple Debugging Chapter 16: Exploring and Method Swizzling Objective-C Frameworks

raywenderlich.com 240

raywenderlich.com 241

Section IV: Custom LLDB
Commands

You’ve learned the basic LLDB commands, the assembly that goes into code and the

miscellaneous low-level concepts that make a program...well, a program.

It’s time to put that knowledge together to create some very powerful and complex

debugging scripts. As you will soon see, you’re only limited by your skill and

imagination — and finding the correct class (or header file) to do your debugging

bidding.

LLDB ships with an integrated Python module that allows you to access most parts of

the debugger through Python. This lets you leverage all the power of Python (and its

modules) to help uncover whatever dark secrets vex you.

Chapter 17: Hello Script Bridging

Chapter 18: Debugging Script Bridging

Chapter 19: Script Bridging Classes and Hierarchy

Chapter 20: Script Bridging with Options & Arguments

Chapter 21. Script Bridging with SBValue & Language
Contexts

Chapter 22. SB Examples, Improved Lookup

Chapter 23. SB Examples, Resymbolicating a Stripped
ObjC Binary

Chapter 24. SB Examples, Malloc Logging

raywenderlich.com 242

17
Chapter 17: Hello Script
Bridging

LLDB has several ways you can use to create your own customized commands. The first

way is through the easy-to-use command alias you saw in Chapter 8, “Persisting and

Customizing”. This command simply creates an alias for a static command. While easy

to implement, it really only allowed you to execute commands with no input.

After that came the command regex, which let you specify a regular expression to

capture input then apply it to a command. You learned about this command in Chapter

9, “Regex Commands”. This command works well when you want to feed input to an

LLDB command, but it was inconvenient to execute multiline commands and supplying

multiple, optional parameters could get really messy.

Next up in the tradeoff between convenience and complexity is LLDB’s script bridging.

With script bridging, you can do nearly anything you like. Script bridging is a Python

interface LLDB uses to help extend the debugger to accomplish your wildest debugging

dreams.

However, there’s a cost to the script bridging interface. It has a steep learning curve, and

the documentation, to put it professionally, sucks. Fortunately, you’ve got this book in

your hands to help guide you through learning script bridging. Once you’ve a grasp on

LLDB’s Python module, you can do some very cool (and very scary!) things.

raywenderlich.com 243

Credit where credit's due
Before we officially begin talking about script bridging, I want to bring up one Python

script that has blown my mind. If it wasn't for this script, this book would not be in your

hands.

/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/
Versions/A/Resources/Python/lldb/macosx/heap.py

This is the script that made me take a deep dive into learning LLDB. I've never had a

mental butt-kicking as good as I did trying to initially understand what was happening

in this code.

This script had it all: finding stack traces for malloc'd objects (malloc_info -s), getting

all instances of a particular subclass of NSObject (obj_refs -O), finding all pointers to a

particular reference in memory (ptr_refs), finding C strings in memory (cstr_ref).

You can load the contents of this script with the following LLDB command:

(lldb) command script import lldb.macosx.heap

Sadly, this script has fallen a bit out of functionality as the compiler has changed, while

this code has not, rendering several of its components unusable.

When you're done reading this section, I would strongly encourage you to attempt to

understand the contents of this script. You can learn a lot from it.

Ok, now back to our regularly scheduled, reading program...

Python 101
As mentioned, LLDB’s script bridge is a Python interface to the debugger. This means

you can load and execute Python scripts in LLDB. In those Python scripts, you include

the lldb module to interface with the debugger to obtain information such as the

arguments to a custom command.

Don’t know Python? Don’t fret. Python is one of the most friendly languages to learn.

And just like the Swift Playgrounds everyone’s losing their mind over, Python has an

attractive REPL for learning.

Note: At the time of writing, there are signs LLDB is slowly migrating over from
Python version 2 to Python 3. Just like Swift, there are breaking changes in these

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 244

different versions. In order to make sure you’re learning the correct version of
Python, you need to know which version of Python LLDB is using. At the time of
writing, LLDB uses Python 2.7.10.

Let’s figure out which version of Python LLDB is using. Open a Terminal window and

type the following:

lldb

As expected, LLDB will start. From there, execute the following commands to find out

which Python version is linked to LLDB:

(lldb) script import sys
(lldb) script print (sys.version)

The script command brings up the Python interpreter for LLDB. If you just typed in

script without arguments, you’d be greeted with LLDB’s Python REPL.

If LLDB’s Python version is different than 2.7.x, freak out and complain loudly on the

book’s forum.

Note: If the version is 2.7.x this is still valid. As long as the version you’re running
is not Python 3.X.Y by default your system will work as described. Your system-
installed Python version does not have to match 2.7.10 exactly; bug fix releases
work fine also.

Now you know the Python version LLDB works with, ensure you have the correct

version of Python symlinked to the python Terminal command. Open a new Terminal

window and type the following:

python --version

If the Python version matches the one that LLDB has, then launch Python with no

arguments in the Terminal:

python

If you have a different version of Python symlinked (i.e. 3.X.Y), you need to launch

Python with the correct version number. For example, in Terminal, type python and

press Tab. Different version(s) of Python might pop up with the correct version number.

Enter the correct version number associated with the LLDB version of Python:

python2.7

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 245

Either way, ensure the LLDB version of Python matches the one you have in your
Terminal:

>>> import sys
>>> print (sys.version)

Notice in the actual Python REPL there’s no need to prefix any of the commands with

the LLDB script command.

Playing around in Python
If you are unfamiliar with Python, this section will help you quickly get familiar with

the language. If you’re already knowledgeable about Python, feel free to jump to the

next section.

In your Terminal session, open a Python REPL by typing the following:

python

Next, in the Python REPL, type the following:

>>> h = "hello world"
>>> h

You’ll see the following output:

'hello world'

Python lets you assign variables without needing to declare the type beforehand. Unlike

Swift, Python doesn’t really have the notion of constants, so there’s no need for a var or

let declaration for a variable.

Note: If you have a different version of Python, then some of the commands might
have different syntax. You’ll need to consult Google to figure out the correct
equivalent command.

Going a step further, play around with the variable h and do some basic string

manipulation:

>>> h.split(" ")
['hello', 'world']

This will give a Python list, which is somewhat like an array that can store different

types of objects.

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 246

If you need your Swift fix equivalent, then imagine a list is something similar to the

following Swift code:

var h: [Any] = []

You can verify this by looking up the Python’s class type. In Terminal, press the up

arrow to bring up the previous command and append the .__class__ call to the end like

so:

>>> h.split(" ").__class__
<type 'list'>

Note there's two underscores preceding and following the word class.

What type of class is the h variable?

>>> h.__class__
<type 'str'>

That’s good to know; a string is called str. You can get help on the str object by typing

the following:

>>> help (str)

This will dump all the info pertaining to str, which is too much to digest at the

moment.

Exit out of this documentation by typing the q character and narrow your search by

looking only for the split function used previously:

>>> help (str.split)

You’ll get some documentation output similar to the following:

Help on method_descriptor:

split(...)
 S.split([sep [,maxsplit]]) -> list of strings

 Return a list of the words in the string S, using sep as the
 delimiter string. If maxsplit is given, at most maxsplit
 splits are done. If sep is not specified or is None, any
 whitespace string is a separator and empty strings are
 removed from the result.

Reading the above documentation, you can see the first optional argument expects a

string, and an optional second argument to indicate the maximum upper limit to split

the string.

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 247

What do you think will happen when you try to execute the following command? Try
your best to figure it out before executing it.

>>> h.split(" ", 0)

Now to turn your attention towards functions. Python uses indentation to define scope,

instead of the braces that many other languages use, including Swift and Objective-C.

This is a nice feature of Python, since it forces developers to not be lazy slobs with their

code indentation.

Declare a function in the REPL:

>>> def test(a):
...

You’ll get an ellipsis as output, which indicates you have started creating a function.

Type two spaces and then enter the following code. If you don’t have a consistent

indentation, the python function will produce an error.

... print(a + " world!")

Press Enter again to exit out of the function. Now, test out your newly created test

function:

>>> test("hello")

You’ll get the expected hello world! printed out.

Now that you can “truthfully” put three years of Python experience on your resume, it’s

time to create an LLDB Python script.

Creating your first LLDB Python script
From here on out, you’ll be creating all your LLDB Python scripts in the ~/lldb

directory. If you want to have them in a different directory, everytime I say ~/lldb,

you'll need to invoke your “mental symlink” to whatever directory you’ve decided to

use.

In Terminal, create the ~/lldb directory:

mkdir ~/lldb

In your favorite ASCII text editor, create a new file named helloworld.py in your newly

created ~/lldb directory. For this particular example, I’ll use the my-editor-is-better-

neutral-argument, nano.

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 248

nano ~/lldb/helloworld.py

Add the following code to the file:

def your_first_command(debugger, command, result, internal_dict):
 print ("hello world!")

Make sure you indent the print ("hello world") line (ideally with two spaces) or else

it won’t be included as part of the function!

For now, ignore the parameters passed into the function. Remember when you learned

about your hello_world.c or hello_world.java, and the instructor (or the internet) said

to just ignore the params in main for now? Yeah, same thing here. These params are the

defined way LLDB interacts with your Python code. You’ll explore them in upcoming

chapters.

Save the file. If you’re using nano, Ctrl + O will write to disk.

Create a new tab in Terminal and launch a new LLDB session:

lldb

This will launch a blank, unattached LLDB session.

In this new LLDB session, import the script you created:

(lldb) command script import ~/lldb/helloworld.py

If the script is imported successfully, there will be no output.

But how do you execute the command? The only thing the above command did was

bring the helloworld (yes, named after the file) module’s path in as a candidate to use

for Python.

If you plan to use this function in Python, you’ll need to import the module if you want

to use any of the functions. Type the following into LLDB:

(lldb) script import helloworld

You can verify you've successfully imported the module by dumping all the methods in

the helloworld python module:

(lldb) script dir(helloworld)

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 249

The dir function will dump the contents of the module. If you successfully imported

the module, you’ll see the following output:

['__builtins__', '__doc__', '__file__', '__name__', '__package__',
'your_first_command']

Take note, the function you created earlier: your_first_command is listed in the output.

Although the above two commands weren’t necessary to set up the command, it does

show you how this script bridging works. You imported the helloworld module into the

Python context of LLDB, but when you execute normal commands, you aren’t executing

in a Python context (although the command logic underneath could be using Python).

So how do you make your command available only through LLDB, and not through the

Python context of LLDB?

Head back to LLDB and type the following:

(lldb) command script add -f helloworld.your_first_command yay

This adds a command to LLDB, which is implemented in the helloworld Python module

with the function your_first_command. This scripted function is assigned to the LLDB

command yay.

Execute the yay command now:

(lldb) yay

Provided everything worked, you’ll get the expected hello world! output.

Setting up commands efficiently
Once the high of creating a custom function in script bridging has worn off, you’ll come

to realize you don’t want to type this stuff each time you start LLDB. You want those

commands to be there ready for you as soon as LLDB starts.

Fortunately, LLDB has a lovely function named __lldb_init_module, which is a hook

function called as soon as your module loads into LLDB.

This means you can stick your logic for creating the LLDB command in this function,

eliminating the need to manually set up your LLDB function once LLDB starts!

Open the helloworld.py class you created and add the following function below

your_first_command’s definition:

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 250

def __lldb_init_module(debugger, internal_dict):
 debugger.HandleCommand('command script add -f
helloworld.your_first_command yay')

Here you're using a parameter passed into the function named debugger. With this

object, an instance of SBDebugger, you’re using a method available to it called

HandleCommand. Calling debugger.HandleCommand is pretty much equivalent to typing

something into LLDB.

For example, if you typed: po "hello world", the equivalent command would be
debugger.HandleCommand('po "hello world"')

Remember the python help command you used earlier? You can get help

documentation from this command by typing:

(lldb) script help(lldb.SBDebugger.HandleCommand)

At the time of writing, you’ll get a rather disappointing amount of help documentation:

HandleCommand(self, *args) unbound lldb.SBDebugger method
 HandleCommand(self, str command)

That’s why there’s such a steep learning curve to this stuff, and the reason not many

people venture into learning about script bridging. That’s why you picked up this book,

right?

Save your helloworld.py file and open up your ~/.lldbinit file in your favorite editor.

You’re now going to specify you want the helloworld module to load at startup every

time LLDB loads up.

At the end of the file, add the following line:

command script import ~/lldb/helloworld.py

Save and close the file.

Open Terminal and start up another tab with LLDB in it like so:

lldb

Since you specified to have the helloworld module imported into LLDB upon startup,

and you also specified to create the yay function as soon as the helloworld python

module loads through the __lldb_init_module module, the yay LLDB command will be

available immediately to you.

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 251

Try it out now:

(lldb) yay

If everything went well you’ll see the following output:

hello world!

Awesome! You now have a foundation for building some very complex scripts into

LLDB. In the following chapters, you’ll explore more of how to use this incredibly

powerful tool.

For now, close all those Terminal tabs and give yourself a pat on the back.

Where to go from here?
If you don’t feel comfortable with Python, now is the time to start brushing up on it. If

you have past development experience, you’ll find Python to be a fun and friendly

language to learn. It’s a great language for quickly building other tools to help with

everyday programming tasks.

Advanced Apple Debugging Chapter 17: Hello Script Bridging

raywenderlich.com 252

18
Chapter 18: Debugging
Script Bridging

You’ve learned the basics of LLDB’s Python script bridging. Now you’re about to embark

on the frustrating yet exhilarating world of making full LLDB Python scripts.

As you learn about the classes and methods in the Python lldb module, you’re bound to

make false assumptions or simply type incorrect code. In short, you’re going to screw up.

Depending on the error, sometimes these scripts fail silently, or they may blow up with

an angry stderr.

You need a methodical way to figure out what went wrong in your LLDB script so you

don’t pull your hair out. In this chapter, you’ll explore how to inspect your LLDB Python

scripts using the Python pdb module, which is used for debugging Python scripts. In

addition, you can execute your own “normal” Objective-C, Objective-C++, C or Swift

code (or even other languages) within SBDebugger’s (or SBCommandReturnObject’s)

HandleCommand method.

In fact, there's alternative ways to execute non-Python code that you’ll learn about in

an upcoming chapter, but for now, you’ll stick to HandleCommand and see how to

manage a build time error, or fix a script that produces an incorrect result.

Although it might not seem like it at first, this is the most important chapter in the

LLDB Python section, since it will teach you how to explore and debug methods when

you’re learning this new Python module. I would have (figuratively?) killed for a chapter

like this when I was first learning the Script Bridging module.

raywenderlich.com 253

Debugging your debugging scripts with
pdb
Included in the Python distribution on your system is a Python module named pdb you

can use to set breakpoints in a Python script, just like you do with LLDB itself! In

addition, pdb has other debugging essential features that let you step into, out of, and

over code to inspect potential areas of interest.

You’re going to continue using the helloworld.py script in ~/lldb from the previous

chapter. If you haven’t read that chapter yet, copy the helloworld.py from the starter

directory into a directory named lldb inside your home directory.

Either way, you should now have a file at ~/lldb/helloworld.py.

Open up helloworld.py and navigate to the your_first_command function, replacing it

with the following:

def your_first_command(debugger, command, result, internal_dict):
 import pdb; pdb.set_trace()
 print ("hello world")

Note: It’s worth pointing out pdb will not work when you’re debugging Python
scripts in Xcode. The Xcode console window will hang once pdb is tracing a script,
so you’ll need to do all pdb Python script debugging in a Terminal window.

Save your changes and open a Terminal window to create a new LLDB session. In

Terminal, type:

lldb

Next, execute the yay command (which is defined in helloworld.py, remember?) like

so:

(lldb) yay woot

Execution will stop and you’ll get output similar to the following:

> /Users/derekselander/lldb/helloworld.py(3)your_first_command()
-> print ("hello world")
(Pdb)

The LLDB script gave way to pdb. The Python debugger has stopped execution on the

print line of code within helloworld.py inside the function your_first_command.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 254

When creating a LLDB command using Python, there are specific parameters expected
in the defining Python function. You’ll now explore these parameters, namely debugger,
command, and result.

Explore the command argument first, by typing the following into your pdb session:

(Pdb) command

This will dump out the commands you supplied to your yay custom LLDB command.

This will always come in the form of a str, even if you have multiple arguments or

integers as input. Since there’s no logic to handle any commands, the yay command will

silently ignore all input. If you typed in yay woot as indicated earlier, only woot would

be spat out as the command.

Next up on the parameter exploration list is the result parameter. Type the following

into pdb:

(Pdb) result

This will dump out something similar to the following:

<lldb.SBCommandReturnObject; proxy of <Swig Object of type
'lldb::SBCommandReturnObject *' at 0x110323060> >

This is an instance of SBCommandReturnObject, which is a class the lldb module uses to

let you indicate if the execution of an LLDB command was successful. In addition, you

can append messages that will be displayed when your command finishes.

Type the following into pdb:

(Pdb) result.AppendMessage("2nd hello world!")

This appends a message which will be shown by LLDB when this command finishes. In

this case, once your command finishes executing, 2nd hello world! will be displayed.

However, your script is still frozen in time thanks to pdb.

Once your LLDB scripts get more complicated, the SBCommandReturnObject will come

into play, but for simple LLDB scripts, it’s not really needed. You’ll explore the

SBCommandReturnObject command more later in this chapter.

Finally, onto the debugger parameter. Type the following into pdb:

(Pdb) debugger

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 255

This will dump out another object of class SBDebugger, similar to the following:

<lldb.SBDebugger; proxy of <Swig Object of type 'lldb::SBDebugger *' at
0x110067180> >

You explored this class briefly in the previous chapter to help create the LLDB yay

command. You’ve already learned one of the most useful commands in SBDebugger:

HandleCommand.

Resume execution in pdb. Like LLDB, it has logic to handle a c or continue to resume

execution.

Type the following into pdb:

(Pdb) c

You’ll get the following output:

hello world!
2nd hello world!

pdb is great when you need to pause execution in a certain spot to figure out what’s

gone wrong. For example, you could have some complicated setup code, and pause in an

area where the logic doesn’t seem to be correct.

This is a much more attractive solution than constantly typing script in LLDB to

execute one line of Python code at a time.

pdbʼs post mortem debugging
Now that you've a basic understanding of the process of debugging your scripts, it’s

time to throw you into the deep end with an actual LLDB script and see if you can fix it

using pdb’s post-mortem debugging features.

Depending on the type of error, pdb has an attractive option that lets you explore the

problematic stack trace in the event the code you’re running threw an exception. This

type of debugging methodology will only work if Python threw an exception; this

method will not work if you receive unexpected output but your code executed without

errors.

However, if your code has error handling (and as your scripts get more complex, they

really should), you can easily hunt down potential errors while building your scripts.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 256

Find the starter folder of the resources for this chapter. Next, copy the findclass.py

file over to your default ~/lldb directory. Remember, if you’re stubborn and decided to

go with a different directory location, you’ll need to adjust accordingly.

Don’t even look at what this code does yet. It’s not going to finish executing as-is, and

you’ll use pdb to inspect it after you view the error.

Once the script has been copied to the correct directory, open a Terminal window and

launch and attach LLDB to any program which contains Objective-C. You could choose

a macOS application or something on the iOS Simulator, or maybe even a watchOS

application.

For this example, I’ll attach to the macOS Photos application, but you’re strongly

encouraged to attach to a different application. Hey, that’s part of being an explorer!

Make sure the application is alive and running and attach LLDB to it:

lldb -n Photos

Once the process has attached, import the new script into LLDB:

(lldb) command script import ~/lldb/findclass.py

Provided you placed the script in the correct directory, you should get no output. The

script will install quietly.

Figure out what this command does by looking at the documentation, since you haven’t

even looked at the source code for it yet. Type the following into LLDB:

(lldb) help findclass

You’ll get output similar to the following:

Syntax: findclass

The `findclass` command will dump all the Objective-C runtime classes it
knows about. Alternatively, if you supply an argument for it, it will do
a case-sensitive search looking only for the classes that contain the
input.

Usage: findclass # All Classes
Usage: findclass UIViewController # Only classes that contain
UIViewController in name

Cool! Let’s try this command. Try dumping out all classes the Objective-C runtime

knows about.

(lldb) findclass

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 257

You’ll get a rather annoying error assertion similar to the following:

Traceback (most recent call last):
 File "/Users/derekselander/lldb/findclass.py", line 40, in findclass
 raise AssertionError("Uhoh... something went wrong, can you figure it
out? :]")
AssertionError: Uhoh... something went wrong, can you figure it out? :]

It’s clear the author of this script is horrible at providing decent information into what

happened in the AssertionError. Fortunately, it raised an error! You can use pdb to

inspect the stack trace at the time the error was thrown.

In LLDB, type the following:

(lldb) script import pdb
(lldb) findclass
(lldb) script pdb.pm()

This imports pdb into LLDB’s Python context, runs findclass again, then asks pdb to

perform a “post mortem”.

LLDB will change to the pdb interface and jump to the line that threw the error.

> /Users/derekselander/lldb/findclass.py(40)findclass()
-> raise AssertionError("Uhoh... something went wrong, can you figure it
out? :]")
(Pdb)

From here, you can use pdb as your new BFF to help explore what’s happening.

Speaking of what’s happening, you haven’t even looked at the source code yet! Lets

change that. Type the following into pdb:

(Pdb) l 1, 50

This will list lines 1, 50 of the findclass.py script.

You have the typical function signature which handles the majority of the logic in these

commands:

def findclass(debugger, command, result, internal_dict):

Next up in interesting tidbits is a big long string named codeString, which starts its

definition on line 18. It’s a Python multi-line string, which starts with three quotes and

finishes with three quotes on line 35. This string is where the meat of this command’s

logic lives.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 258

In your pdb session, type the following:

(Pdb) codeString

You’ll get some not-so-pretty output, since dumping a Python string includes all

newlines.

'\n @import Foundation;\n int numClasses;\n Class * classes =
NULL;\n classes = NULL;\n numClasses = objc_getClassList(NULL, 0);
\n NSMutableString *returnString = [NSMutableString string];\n
classes = (__unsafe_unretained Class *)malloc(sizeof(Class) *
numClasses);\n numClasses = objc_getClassList(classes, numClasses);
\n\n for (int i = 0; i < numClasses; i++) {\n Class c =
classes[i];\n [returnString appendFormat:@"%s,", class_getName(c)];
\n }\n free(classes);\n \n returnString;\n '

Let’s try that again. Use pdb to print out a pretty version of the codeString variable.

(Pdb) print codeString

Much better!

@import Foundation;
int numClasses;
Class * classes = NULL;
classes = NULL;
numClasses = objc_getClassList(NULL, 0);
NSMutableString *returnString = [NSMutableString string];
classes = (__unsafe_unretained Class *)malloc(sizeof(Class) *
numClasses);
numClasses = objc_getClassList(classes, numClasses);

for (int i = 0; i < numClasses; i++) {
 Class c = classes[i];
 [returnString appendFormat:@"%s,", class_getName(c)];
}
free(classes);

returnString;

This codeString contains Objective-C code which uses the Objective-C runtime to get

all the classes it knows about. The final line of this code, returnString, essentially lets

you return the value of returnString back to the Python script. More on that shortly.

Scan for the next interesting part. On line 40, the debugger is currently at a raise call.

This is also the line that provided the annoyingly vague message you received from

LLDB.

37 res = lldb.SBCommandReturnObject()
38 debugger.GetCommandInterpreter().HandleCommand("po " ...
39 if res.GetError():
40 -> raise AssertionError("Uhoh... something went wron...

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 259

41 elif not res.HasResult():
42 raise AssertionError("There's no result. Womp wom...

Note the -> on line 40. This indicates where pdb is currently paused.

But wait, res.GetError() looks interesting. Since everything is fair game to explore

while pdb has the stack trace, why don’t you explore this error to see if you can actually

get some useful info out of this?

(Pdb) print res.GetError()

There you go! Depending whether you decided to break on a macOS, iOS, watchOS, or

tvOS app, you might get a slightly different count of error messages, but the idea is the

same.

error: warning: got name from symbols: classes
error: 'objc_getClassList' has unknown return type; cast the call to its
declared return type
error: 'objc_getClassList' has unknown return type; cast the call to its
declared return type
error: 'class_getName' has unknown return type; cast the call to its
declared return type

The problem here is the code within codeString is causing LLDB some confusion. This

sort of error is very common in LLDB. You often need to tell LLDB the return type of a

function, because it doesn’t know what it is. In this case, both objc_getClassList and

class_getName have unknown return types.

A quick consultation with Google tells us the two problematic methods in question

have the following signatures:

int objc_getClassList(Class *buffer, int bufferCount);
const char * class_getName(Class cls);

All you need to do is cast the return type to the correct value in the codeString code.

Open up ~/lldb/findclass.py and replace the definition of codeString with the

following:

codeString = r'''
@import Foundation;
int numClasses;
Class * classes = NULL;
classes = NULL;
numClasses = (int)objc_getClassList(NULL, 0);
NSMutableString *returnString = [NSMutableString string];
classes = (__unsafe_unretained Class *)malloc(sizeof(Class) *
numClasses);
numClasses = (int)objc_getClassList(classes, numClasses);

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 260

for (int i = 0; i < numClasses; i++) {
 Class c = classes[i];
 [returnString appendFormat:@"%s,", (char *)class_getName(c)];
}
free(classes);

returnString;
'''

Save your work and jump back to your LLDB Terminal window. You’ll still be inside pdb,

so type Ctrl + D to exit. Next, type the following:

(lldb) command script import ~/lldb/findclass.py

This will reload the script into LLDB with the new changes in the source code. This is

required if you make any changes to the source code and you want to test out the

command again without having to restart LLDB.

Try your luck again and dump all of the Objective-C classes available in your process.

(lldb) findclass

Boom! You’ll get a slew of output containing all the Objective-C classes in your

program. From your app, from Foundation, from CoreFoundation, and so on. Heh...

there’s more than you thought there would be, right?

Try limiting your query to something slightly more manageable. Search for all classes

containing the word ViewController:

(lldb) findclass ViewController

Depending on the process you’ve attached to, you’ll get a different amount of classes

containing the name ViewController.

When developing commands using the Python script bridging, pdb is a superb tool to

keep in your toolbox to help you understand what is happening. It works well for

inspecting complicated sections and breaking on problematic areas in your Python

script.

expressionʼs Debug Option
As you saw in Chapter 5, “Expression”, LLDB’s expression command has a slew of

options available for when LLDB is evaluating code provided to this command. One of

these options, overlooked until now, is the --debug option, or more simply -g.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 261

If you supply this option to expression, LLDB will evaluate the expression, but the

expression will be written to a file and control will stop as soon as execution hits your

command.

Confused? Maybe it would be better to see this option in action.

Jump back to your findclass.py file and jump to line 38, which contains the following

line of code:

debugger.GetCommandInterpreter().HandleCommand("expression -lobjc -O -- "
+ codeString, res)

In the options section of the expression command, add the -g option so it now looks

like the following:

debugger.GetCommandInterpreter().HandleCommand("expression -lobjc -g -O
-- " + codeString, res)

Save your work in findclass.py and reload your script through LLDB:

(lldb) command script import ~/lldb/findclass.py

Once reloaded, give findclass a spin:

(lldb) findclass

Execution will now stop in a method created by the JIT (just in time) compiler and let

you debug the code yourself in LLDB!

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 262

Note: This script will raise an error because the --debug option was turned on. If
you were to use pdb to inspect the res.GetError(), you’ll find that it contains the
following message: Execution was halted at the first instruction of the expression

function because "debug" was requested... This is OK and not part of an error you
should worry about since you're debugging your own expression. It’s worth noting
that you'll not get a return value from this script since it errored out.

Now you can inspect, step, and even augment parameters just like you would any LLDB

expression.

Since you're in the Terminal window, you'll need to inspect the source code using the

source list, or more conveniently, the list or l LLDB command.

In LLDB, type the following:

(lldb) l

This will list the current line and slowly move down through the source file. Repeat to

view the next set of lines.

(lldb) l

If you were to keep executing the same command, it would eventually cover all the

source lines available and produce no more output.

Another solution to viewing and stepping through source code while in a LLDB

Terminal window is to use the gui LLDB command. This recently-added command in

LLDB will transform your Terminal window into a curses-style GUI.

Type the following to jump into the LLDB GUI window:

(lldb) gui

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 263

From here, you can step through code using the N key, or step into code using S. Once

you’re at a location of interest, you can exit out of the LLDB GUI by typing Fn + F1 (or

just F1 if you don’t have the standard function keys enabled) to bring up the LLDB

menu.

From there, press X to Exit out of the LLDB GUI and back into your console to print

out/modify or alter control.

Using the --debug option is a great way to hunt for logic that returns unexpected

results in your script that is running “actual” code — that is, JIT code — inside the

process.

For example, if your script gave you unexpected results, I would get rid of all pdb

instances, add the -g option to a expression command executed by HandleCommand and

then execute the custom command I was working on. From there, I would use the LLDB

console (through Terminal or through Xcode... which is a far better way to view the

source code) and then hunt for the reason why my JIT code isn’t returning the expected

results.

Note: It’s worth noting I have occasionally experienced errors when using po LLDB
command while exploring contents inside a paused JIT function created with the -
g option. If that's the case, I'll fall back to using the frame variable command to
explore the parameters of interest. Check out Chapter 6, “Thread, Frame &
Stepping Around” to learn more about the frame LLDB command.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 264

Once you’re satisfied with exploring the --debug option, remove the -g option for your

Python script.

How to handle problems
As I alluded to in the introduction to this chapter, you're going to run into problems

when building these scripts. Let’s recap what options you have, depending on the type

of problem you encounter when building out these scripts.

Typically, you should perform iterative development on a Python script, save, then

reload your script while LLDB is attached to a process and the process is still running.

Python build errors
When reloading your script, you might encounter something like this:

This is an example of a build error that occurred when I was creating my script. This

command will not successfully load since there are Python syntax errors in it.

This is the most straightforward type of problem, because reloading the script will show

me the error. I can tell that on line 37, I have unmatched indentation in the findclass

Python script.

Python runtime errors or unexpected values
What if your Python script loads just fine, and you don’t get any build errors to the

console when reloading — but you receive unexpected output, or your script crashes

and you need to further inspect what’s happening?

Now, you can use the Python pdb module. Go to your Python script (in this case,

findclass.py) and add the following line of code right before you expect the problem to

occur:

import pdb; pdb.set_trace()

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 265

Jump over to Terminal (again, pdb will freeze Xcode, so Terminal is your only option for

pdb) and attach to a process with LLDB, then try your command again.

From there, execution will eventually freeze and hit your pdb-triggered breakpoint,

where you can inspect parameters and step through the flow of execution.

JIT code build errors
Often, you’re executing actual code inside the process and then return the value back to

your Python script. Again, this will be referred to as JIT code throughout the remainder

of the book.

Imagine the following: you’re executing a long batch of JIT code, and when running the

JIT code in a HandleCommand method from the LLDB Python module you get an error

saying something is not working.

This is one of the more annoying aspects with working with these scripts, since the

debugger won’t give you line information along with the error. If you can’t uniquely

identify where the error could have originated, you'll need to systematically comment

out areas of your code until HandleCommand produces no errors for the JIT code.

From there, you can hone in on any locations giving you problems, and fix them.

JIT code with unexpected results
The final types of errors you could encounter are unexpected results from your JIT code.

For example, in the findclass.py script, what if you didn’t get an expected class? What

if you get more hits than you would have expected, searching for a particular query?

This is when that --debug option from the LLDB expression command comes in handy.

Hunt down the method for SBDebugger’s or SBCommandReturnObject’s HandleCommand

and add the -g option when the expression command is being used.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 266

debugger.GetCommandInterpreter().HandleCommand("expression -lobjc -O -g
-- " + codeString, res)

Reload your script, then execute the command.

Control will stop on the JIT code and let you inspect it to determine what went wrong. If

you do this in Xcode, you have all the conveniences of your hotkeys while viewing the

source code to let you inspect and step over execution to hunt down the problem.

Where to go from here?
You’re now equipped to tackle the toughest debugging problems while making your

own custom scripts!

There’s a lot more you can do with pdb than what I described here. Check out https://

docs.python.org/2.7/library/pdb.html and read up on the other cool features of pdb. Be

sure to remember that the version of pdb must match the version of Python that LLDB

is using.

While you’re at it, now’s the time to start exploring other Python modules to see what

other cool features they have. Not only do you have the lldb Python module, but you

also have the full power of Python to use when creating advanced debugging scripts.

Advanced Apple Debugging Chapter 18: Debugging Script Bridging

raywenderlich.com 267

19
Chapter 19: Script Bridging
Classes and Hierarchy

You’ve learned the essentials of working with LLDB’s Python module, as well as how to

correct any errors using Python’s pdb debugging module. In addition, you’ve explored

expression’s --debug option to manually pause and explore JIT code that's being

executed in-process. Now you’ll explore the main players within the lldb Python

module for a good overview of the essential classes.

You’ll be building a more complex LLDB Python script as you learn about these classes.

You’ll create a regex breakpoint that only stops after the scope in which the breakpoint

hit has finished executing. This is useful when exploring initialization and accessor-

type methods, and you want to examine the object that's being returned after the

function executes.

In this chapter, you’ll learn how to create the functionality behind this script while

learning about the major classes within the LLDB module. You’ll continue on with this

script in the next chapter by exploring how to add optional arguments to tweak the

script based on your debugging needs.

raywenderlich.com 268

The essential classes
Within the lldb module, there are several important classes:

• lldb.SBDebugger: The “bottleneck” class you’ll use to access instances of other

classes inside your custom debugging script.

There will always be one reference to an instance of this class passed in as a function

parameter to your script. This class is responsible for handling input commands into

LLDB, and can control where and how it displays the output.

• lldb.SBTarget: Responsible for the executable being debugged in memory, the debug

files, and the physical file for the executable resident on disk.

In a typical debugging session, you’ll use the instance of SBDebugger to get the

selected SBTarget. From there, you’ll be able to access the majority of other classes

through SBTarget.

• lldb.SBProcess: SBTarget has a to-many relationship to SBProcess: SBTarget

manages one or more SBProcess instances. SBProcess handles memory access

(reading/writing) as well as the multiple threads within the process.

• lldb.SBThread: Manages the stack frames (SBFrames) within that particular thread,

and also manages control logic for stepping.

• lldb.SBFrame: Manages local variables (given through debugging information) as

well as any registers frozen at that particular frame.

• lldb.SBModule: Represents a particular executable. You’ve learned about modules

when exploring dynamic libraries; a module can include the main executable or any

dynamically loaded code (like the Foundation framework).

You can obtain a complete list of the modules loaded into your executable using the

image list command.

• lldb.SBFunction: This represents a generic function — the code — that is loaded into

memory. This class has a one-to-one relationship with the SBFrame class.

Got it? No? Don’t worry about it! Once you see how these classes interact with each

other, you’ll have a better understanding of their place inside your program.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 269

This diagram is a simplified version of how the major LLDB Python classes interact with

each other. If there’s no direct path from one class to another, you can still get to a class

by accessing other variables, not shown in the diagram, that point to an instance (or all

instances) of a class (many of which are not shown in the diagram).

That being said, the entry-point into the majority of these objects will be through an

instance of SBDebugger, passed in as an instance variable called debugger in your

scripts. From there, you’ll likely go after the SBTarget through GetSelectedTarget() to

access all the other instances.

Exploring the lldb module through... LLDB
Since you’ll be incrementally building a reasonably complex script over the next two

chapters, you'll need a way to conveniently reload your LLDB script without having to

stop, rerun and attach to a process. You'll create an alias for reloading the ~/.lldbinit

script while running LLDB.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 270

Append the following to your ~/.lldbinit file:

command alias reload_script command source ~/.lldbinit

This adds a command called reload_script which reloads the ~/.lldbinit file. Now

whenever you save your work, you can simply reload the updated contents without

having to restart LLDB and the process it's attached to.

In addition, this is a useful command to ensure everything inside your ~/.lldbinit file

is still valid. Typically, errors in your ~/.lldbinit will go unnoticed since LLDB doesn’t

have access to your stderr when it’s starting up. However, reloading while LLDB is alive

and active will dump any syntax errors in your scripts right to the LLDB console.

While you’re building out this new script, you’ll create a one-time-use burner project to

explore these LLDB Python APIs. To mix things up, you’ll create a tvOS project this

time.

Open Xcode. Select File\New\Project... . Choose tvOS\Single View Application. Call

this new project Meh (because I am out of creative names to use!). Make sure the

language is set to Swift. Then save the project wherever you want.

Once the project has been created, open ViewController.swift and add a GUI

breakpoint to the beginning of viewDidLoad().

Build, run and wait for the breakpoint to be triggered. Jump over to the LLDB console.

Next, type the following into LLDB:

(lldb) script lldb.debugger

You’ll get output similar to the following:

<lldb.SBDebugger; proxy of <Swig Object of type 'lldb::SBDebugger *' at
0x113f2f990> >

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 271

LLDB has a few easily accessible global variables that map to some of the classes

described above:

• lldb.SBDebugger -> lldb.debugger

• lldb.SBTarget -> lldb.target

• lldb.SBProcess -> lldb.process

• lldb.SBThread -> lldb.thread

• lldb.SBFrame -> lldb.frame

You’ve just explored the global variable lldb.debugger. Now it’s time to explore the

other variables.

Type the following into LLDB:

(lldb) script lldb.target

You’ll get output similar to the following:

<lldb.SBTarget; proxy of <Swig Object of type 'lldb::SBTarget *' at
0x1142daae0> >

This probably doesn’t mean much to you at the moment because it’s only displaying the

instance of the class, and not the context of what it does, nor what it represents.

This is why the print command might be more useful when you’re starting to explore

these classes.

(lldb) script print lldb.target

This will give you some intelligible output to provide some context:

Meh

Using the print command is a useful trick when you want to get a summary of an

instance, just as calling po on an object gives you an NSObject’s description method in

Objective-C. If you didn’t use the print command, you’d have to hone in on properties

and attributes of SBTarget to figure out the name of the target.

Note: It’s fine that you’re playing with global Python variables in one-line scripts.
However, it’s important you don’t use these global variables in your actual Python
scripts since you can modify the state (i.e step out of a function), and these global
variables will not update until your script has finished.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 272

The correct way to reference these instances is to start from SBDebugger, which is
passed into your script function, and drill down to the appropriate variable from
there.

Go through the remainder of the major global variables and print them out. Start with

the following:

(lldb) script print lldb.process

You’ll get the following:

SBProcess: pid = 47294, state = stopped, threads = 7, executable = Meh

This printed out the process being run. As always, your data might differ (pid, state,

thread etc...).

Next, type the following into LLDB:

(lldb) script print lldb.thread

This time you’ll get something like this:

thread #1: tid = 0x13a921, 0x000000010fc69ab0
Meh`ViewController.viewDidLoad(self=0x00007fa8c5b015f0) -> () at
ViewController.swift:13, queue = ’com.apple.main-thread’, stop reason =
breakpoint 1.1

This has printed out the thread that triggered the breakpoint.

Next, try the frame variable:

(lldb) script print lldb.frame

And finally, this one results in:

frame #0: 0x000000010fc69ab0
Meh`ViewController.viewDidLoad(self=0x00007fa8c5b015f0) -> () at
ViewController.swift:13

This will get you the specific frame where the debugger is paused. You could, of course,

access other frames in other threads. These global variables are merely convenience

getters for you. I would strongly recommend using these global LLDB variables when

you’re playing with and learning about these classes.

Check out http://lldb.llvm.org/python_reference/index.html to learn about which

methods these classes implement.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 273

Alternatively, you can use Python’s help function to get the docstrings for a particular
class. For example, if you were in the Xcode debugging console, and you wanted info on
the active SBTarget, you could do this:

(lldb) script help(lldb.target)

Alternatively, you could go after the actual class instead of the global variable:

(lldb) script help(lldb.SBTarget)

Don’t be afraid to ask for help from the help function. I use it all the time when I’m

figuring out my plan of attack through the lldb module.

Learning & finding documentation on
script bridging classes
Learning this stuff isn’t easy. You’re faced with the learning curve of the LLDB Python

module, as well as learning Python along the way.

The best way to go about learning these foreign APIs is to start in easy, small steps. This

means attaching to a process and using the script command to explore a class or API.

Once you’ve mastered how to use a certain API, it’s fair game to throw it into a custom

Python script.

For example, if I stumbled across the SBTarget class and saw the global variable,

lldb.target, I would jump to the following website https://lldb.llvm.org/

python_reference/lldb.SBTarget-class.html and use the LLDB script command while

exploring the online documentation.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 274

Easy reading
I frequently find myself scouring the class documentation to see what the different

classes can do for me with their APIs. However, doing that in the LLDB Terminal makes

my eyes water. I typically jump to the online documentation because I am a sucker for

basic Cascading Style Sheet(s) with more colors than just the background color and text

color.

In fact, I do this so much, I often use this LLDB command to directly bring up any class I

want to explore:

command regex gdocumentation ’s/(.+)/script import os; os.system("open
https:" + unichr(47) + unichr(47) + "lldb.llvm.org" + unichr(47) +
"python_reference" + unichr(47) + "lldb.%1-class.html")/’

Stick this command in your ~/.lldbinit file. Make sure the above command is only on

one line or else this will not work.

This command is called gdocumentation; it takes a case-sensitive query and opens up

the class of interest in your web browser. For example, if I installed this command into

my ~/.lldbinit file, and I was attached to a process and wanted to explore the online

help documentation for SBTarget, I would type the following into LLDB:

(lldb) gdocumentation SBTarget

This will direct my web browser to the online documentation of SBTarget. Neat!

Documentation for the more serious
If you’re one of those developers who really, really needs to master LLDB’s Python

module, or if you have plans to build a commercial product which interacts with LLDB,

you'll need to take a more serious approach for digging through the lldb module APIs

and documentation.

Since there’s no search functionality available on http://lldb.llvm.org/

python_reference/ (at the time of writing), you need a way to easily search all the

classes for a particular query.

A drastic but excellent suggestion is to copy the entire http://lldb.llvm.org/

python_reference/ site for offline storage using a tool like http://www.httrack.com/.

From there, you can search using Terminal commands.

For example, if I scraped the entire site into ~/websites/lldb on my computer and I

wanted to search for all classes that had an API that pertained to SBProcess, I would

type the following in Terminal:

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 275

mdfind SBProcess -onlyin ~/websites/lldb

It’s not a bad idea to also go after the LLDB mailing lists found here http://

lists.llvm.org/pipermail/lldb-dev/ and grab that website for offline use. There’s are a ton

of useful hints and explanations given by the authors of LLDB which are buried in the

list’s archives.

One final way to search for content is to use an often overlooked feature of Google to

filter queries to a particular website using the site: keyword.

For example, if I wanted to search for all occurrences of SBTarget in LLDB's mailing

archives, I could use the following query with Google:

SBTarget site:http://lists.llvm.org/pipermail/lldb-dev/

Fortunately, the next couple of chapters will guide you through most of the important

classes, so the above suggestions are only meant for the crazy ones out there.

Creating the BreakAfterRegex command
It’s time to create the command you were promised you’d build at the beginning of this

chapter!

How would you design a command to stop immediately after a function, print out the

return value, then continue? Take a bit of happy thinking time for yourself, and try to

figure out how you’d go about creating this script.

I’m serious — stop reading until you’ve given this an honest attempt. I’ll wait.

...

...

...

Good. What did you come up with?

When writing these types of scripts, it’s always good practice to envision what you want

to achieve, and work your way back from there.

You’ll name your command script BreakAfterRegex.py. The steps the command needs

to take are as follows:

• First, use LLDB to create a regex breakpoint.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 276

• Next, add a breakpoint action to step-out of execution (from Chapter 6, “Thread,

Frame & Stepping Around”) until the current frame has finished executing.

• Finally, you’ll use your knowledge of registers from Section II to print out the correct

register that holds the return value.

Using your favorite text editor, create BreakAfterRegex.py in your ~/lldb directory.

Once the file is created, open it and add the following:

import lldb

def __lldb_init_module(debugger, internal_dict):
 debugger.HandleCommand('command script add -f
BreakAfterRegex.breakAfterRegex bar')

def breakAfterRegex(debugger, command, result, internal_dict):
 print ("yay. basic script setup with input: {}".format(command))

You should know what this is doing by now — but in case you forgot,

__lldb_init_module is a callback function called by LLDB after your script has finished

loading into the Python address space.

From there, it references a SBDebugger instance passed in as debugger to execute the

following line of code:

command script add -f BreakAfterRegex.breakAfterRegex bar

This will add a command named bar which is implemented by breakAfterRegex within

the module BreakAfterRegex (named after the file, naturally). If you gave a silly

command like wootwoot instead of bar, your LLDB command would be named that

instead.

Open your ~/.lldbinit file and append the following line:

command script import ~/lldb/BreakAfterRegex.py

Save the file. Open Xcode, which should still be paused on viewDidLoad(). In the LLDB

console, reload the script using your newly created convenience command:

(lldb) reload_script

You’ll get a variable amount of output, as LLDB will display all the scripts it’s loading.

This will reload the contents in your lldbinit file and make the bar command

functional.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 277

Let’s try out the bar command. In LLDB, type the following:

(lldb) bar UIViewController test -a -b

The output in your new LLDB script will echo back the parameters you’ve supplied to it.

You’ve got the basic skeleton up and working. It’s time to write the code to create a

breakpoint based upon your input. You’ll start with creating input designed solely for

handling the regular expression.

Head back to BreakAfterRegex.py and find def breakAfterRegex(debugger, command,

result, internal_dict):.

Remove the print statement and replace it with the following logic:

def breakAfterRegex(debugger, command, result, internal_dict):
 # 1
 target = debugger.GetSelectedTarget()
 breakpoint = target.BreakpointCreateByRegex(command)

 # 2
 if not breakpoint.IsValid() or breakpoint.num_locations == 0:
 result.AppendWarning(
 "Breakpoint isn't valid or hasn't found any hits")
 else:
 result.AppendMessage("{}".format(breakpoint))

 # 3
 breakpoint.SetScriptCallbackFunction(
 "BreakAfterRegex.breakpointHandler")

Here’s what you’re doing:

1. Create a breakpoint using the regex input from the supplied parameter. The

breakpoint object will be of type SBBreakpoint.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 278

2. If breakpoint creation is unsuccessful, the script will warn you it couldn’t find

anything to break on. If successful, the breakpoint object is printed out.

3. Finally, the breakpoint is set up so the function breakpointHandler is called

whenever the breakpoint hits.

What’s that I hear you say? What’s an SBBreakpoint? Well, you can look it up through

LLDB!

(lldb) script help(lldb.SBBreakpoint)

If perusing the output in the LLDB console makes your eyes water, a more convenient

way to view the documentation can be found here:

https://lldb.llvm.org/python_reference/lldb.SBBreakpoint-class.html.

If you installed the gdocumentation command mentioned earlier, you can simply type

the following instead:

(lldb) gdocumentation SBBreakpoint

Grabbing the first line of the help documentation indicates an SBBreakpoint class

represents a logical breakpoint and its associated settings.

OK — back on the main road after that little sightseeing trip. Where were we? Oh right

— you haven’t created the handler function that will be called when the breakpoint is

hit. You’ll do that now.a

Right below breakAfterRegex, add the following function:

def breakpointHandler(frame, bp_loc, dict):
 function_name = frame.GetFunctionName()
 print("stopped in: {}".format(function_name))
 return True

This function is called whenever any of the breakpoints you created using your new

command are hit, and will then print out the function name. Notice the return of True

at the end of the function. Returning True will result in your program stopping

execution. Returning False, or even omitting a return statement will result in the

program continuing to run after this method executes.

This is a subtle but important point. When creating callback functions for breakpoints

(i.e. the breakpointHandler function you just created), you have a different method

signature to implement. This consists of a SBFrame, SBBreakpointLocation, and a

Python dictionary.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 279

The SBFrame represents the frame you’ve stopped in. The SBBreakpointLocation is an

instance of one of your breakpoints found in SBBreakpoint.

This makes sense because you could have many hits for a single breakpoint, especially if

you try to break on a frequently implemented function, such as main, or if you use a

well-matched regular expression.

Here’s another diagram that showcases the simplified interaction of classes when

you’ve stopped on a particular function:

As you (might have?) noticed, SBFrame, and SBBreakpointLocation are your lifelines to

the majority of important lldb classes while in your breakpoint callback function. Using

the previous diagram, you can get to all the major class instances through SBFrame or

through SBFrame’s reference to SBModule.

Remember, you should never use lldb.frame or other global variables inside your

scripts since they could hold a stale state while being executed in a script, so you must

traverse the variables starting with the frame, or bc_loc to get to the instance of the

class you want.

If you accidentally make a typo, or don’t understand some code, simply insert a

breakpoint in the script using the Python pdb module and work your way back from

there. You learned about the pdb module in Chapter 18, “Debugging Script Bridging”.

This script is starting to get complicated — looks like a good time to reload and test it

out. Open the Xcode console window and reload your script:

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 280

(lldb) reload_script

Go through the motions of executing some commands again to test it out:

(lldb) bar somereallylongmethodthatapplehopefullydidntwritesomewhere

You’ll get output similar to the following:

warning: Breakpoint isn't valid or hasn't found any hits

Ok, good. Time to try out an actual breakpoint. Let’s go after a rather frequently

executed method.

In the LLDB console type the following:

(lldb) bar NSObject.init\]

You’ll see something similar to the following:

SBBreakpoint: id = 3, regex = 'NSObject.init\]', locations = 2

Continue execution and use the Simulator remote to click around the tvOS Simulator to

trigger the breakpoint. If you’re having trouble tripping the breakpoint, one surefire

way is to navigate to the simulator’s home screen. From the Simulator,

Hardware\Home (or more easily, ⌘ + Shift + H).

Cool. You’ve successfully added a command to create a regex breakpoint! That’s pretty

darn neat-o.

Right now, you’ve stopped on one of NSObject’s init methods, which could be a class or

an instance method. This is very likely a subclass of NSObject. You’ll manually replicate

the actions you’re about to implement in the Python script using LLDB.

Using the LLDB console, finish executing this method:

(lldb) finish

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 281

Remember your register calling conventions? Since you’re working on the tvOS

Simulator and this architecture is x64, you’ll want to use the RAX register. Print out the

return value of NSObject’s init in LLDB.

(lldb) po $rax

Depending on where and how you were playing with the Simulator, you’ll see a different

object. I received the following output:

<_CFXNotificationNameWildcardObjectRegistration: 0x61000006e8c0>

If curiosity gets the better of you, feel free to explore the properties and methods within

the class you just stumbled across using the strategies discussed in Chapter 16,

“Exploring and Method Swizzling Objective-C Frameworks”.

Stepping out and printing is the exact logic you’ll implement now in your custom script

callback function.

Open BreakAfterRegex.py and revisit the breakpointHandler function. Modify it to

look like the following:

def breakpointHandler(frame, bp_loc, dict):
 # 1
 '''The function called when the regular
 expression breakpoint gets triggered
 '''

 # 2
 thread = frame.GetThread()
 process = thread.GetProcess()
 debugger = process.GetTarget().GetDebugger()

 # 3
 function_name = frame.GetFunctionName()

 # 4
 debugger.SetAsync(False)

 # 5
 thread.StepOut()

 # 6
 output = evaluateReturnedObject(debugger,
 thread,
 function_name)
 if output is not None:
 print(output)

 return False

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 282

B-B-B-B-B-Breakdown time!

1. Yep, if you’re building a full-on Python command script, you’ve got to add some

docstrings. You’ll thank yourself later. Trust me.

2. You’re climbing the hierarchical reference chain to grab the instance of SBDebugger

and SBThread. Your starting point is through SBFrame.

3. This grabs the name of the parent function. Since you’re about to step out of this

current SBFrame, it’s about to get invalidated, so grab any stack references you can

before the stepping-out occurs.

4. SetAsync is an interesting function to use when tampering with control flow while

scripting in a program. The debugger will run asynchronously while executing the

program, so you need to tell it to synchronously wait until stepOut completes its

execution before handing control back to the Python script.

A good programmer will clean up the state to the async’s previous value, but that

becomes a little complicated, as you could run into threading issues when this

callback function triggers if multiple breakpoints were to hit this callback function.

This is not a noticeable setting change when you’re debugging, so it’s fine to leave it

off.

5. You then step out of the method. After this line executes, you’ll no longer be in the

frame you previously stopped in.

6. You’re calling a soon-to-be implemented method evaluateReturnedObject that

takes the appropriate information and generates an output message. This message

will contain the frame you’ve stopped in, the return object, and the frame the

breakpoint stepped out to.

You’re all done with that Python function! Now you need to implement

evaluateReturnedObject. Add it below the previous function you just wrote:

def evaluateReturnedObject(debugger, thread, function_name):
 '''Grabs the reference from the return register
 and returns a string from the evaluated value.
 TODO ObjC only
 '''

 # 1
 res = lldb.SBCommandReturnObject()

 # 2
 interpreter = debugger.GetCommandInterpreter()
 target = debugger.GetSelectedTarget()
 frame = thread.GetSelectedFrame()
 parent_function_name = frame.GetFunctionName()

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 283

 # 3
 expression = 'expression -lobjc -O -- {}'.format(
 getRegisterString(target))

 # 4
 interpreter.HandleCommand(expression, res)

 # 5
 if res.HasResult():
 # 6
 output = '{}\nbreakpoint: '\
 '{}\nobject: {}\nstopped: {}'.format(
 '*' * 80,
 function_name,
 res.GetOutput().replace('\n', ''),
 parent_function_name)
 return output
 else:
 # 7
 return None

Here’s what that does:

1. You first instantiate a new SBCommandReturnObject. You’ve seen this class already in

your primary functions as the result parameter. However, you’re creating your own

here because you’ll use this instance to evaluate and modify an expression. A

typical po "something" will produce output, including two newlines, straight to the

console. You need to grab this output before it goes to the console and remove

those newlines... because you’re fancy like that. In Chapter 21, “Script Bridging with

SBValue & Language Contexts”, you’ll explore a cleaner alternative to evaluating

code and obtaining output, but for now you’ll make do with your existing knowledge

of the SBCommandReturnObject class.

2. You grab a few variables for use later on.

3. Here you create the expression to be executed that prints out the return value. The

getRegisterString is yet another unimplemented function you’ll implement in just

a moment — I promise this will be the last time I do that to you! This function will

return the syntax needed to access the register which holds the return value.

This is required because you can’t know if this script is running on a watchOS, iOS,

tvOS, or macOS device, so you’ll need to augment the register name depending

upon the architecture. Remember, you also need to use the Objective-C context,

since Swift hides the registers from you!

4. Finally, you execute the expression through the debugger’s command interpreter,

SBCommandInterpreter. This class interprets your commands but allows you to

control where the output goes, instead of immediately piping it to stderr or stdout.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 284

5. Once HandleCommand has executed, the output of the expression should now reside

in the SBCommandReturnObject instance. However, it’s good practice to ensure the

return object actually has any output to give to you.

6. If everything worked correctly, you format the old, stepped-out function along with

the object and currently stopped function into a string and return that.

7. However, if there was no input to print from the SBCommandReturnObject, you return

None.

One more method, and then you’re (sort of) done! Implement getRegisterString at the

bottom of your Python script:

def getRegisterString(target):
 triple_name = target.GetTriple()
 if "x86_64" in triple_name:
 return "$rax"
 elif "i386" in triple_name:
 return "$eax"
 elif "arm64" in triple_name:
 return "$x0"
 elif "arm" in triple_name:
 return "$r0"
 raise Exception('Unknown hardware. Womp womp')

You’re using the SBTarget instance to call GetTriple, which returns a description of the

hardware the executable is designed to run on. Next, you determine which syntax you

need to access the register responsible for the return value based on your architecture.

If it’s an unknown architecture, then raise an exception.

You’ve done it! Save your work, jump back to Xcode and reload the script with your

trusty reload_script command in the LLDB command line.

Next, before you get started with the full-blown command, remove all previous

breakpoints like so:

(lldb) br del
About to delete all breakpoints, do you want to do that?: [Y/n] Y
All breakpoints removed. (1 breakpoint)

It’s time to take this beauty for a spin!

Type the following into LLDB:

(lldb) bar NSObject.init\]

This time your script will execute your completed command’s script when it hits the

breakpoint.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 285

Do whatever you need to do through the tvOS Simulator to trigger the init breakpoint;
closing the application will work (⌘ + Shift + H), as will bringing up the Apple TV
Remote (found in the Hardware menu) and tapping on the remote.

Once hit, you’ll get some beautiful output which showcases the method you’ve stopped

on (in this case -[NSObject init]), the object that is being created, and the calling

method as well.

Since you’ve created a breakpoint on a frequently-called method, you’ll soon hit the

same breakpoint again.

This is a fun tool to have at your disposal. You could, for instance, create a well-crafted

regex breakpoint to trigger each time an NSURL is created within any application...

owned by you or not. For example, you could try:

(lldb) bar NSURL(\(\w+\))?\ init

The “weird” syntax is needed because a lot of the initialization methods for NSURL are

in categories. Alternatively, you could use this script on a problematic getter method of

a Core Data object that is returning unusual values.

Where to go from here?
You’ve begun your quest to create Python LLDB scripts of real-world complexity. In the

next chapter, you’ll take this script even further and add some cool options to

customize this script.

But for now, have fun and play around with this bar script! Attach LLDB to some

applications running in the simulator and play around with the command. Try the

already mentioned NSURL initialization (or NSURLRequest initialization) breakpoints.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 286

Once you get bored of that, see what objects are using Core Data by inspecting the
return value of -[NSManagedObject valueForKey:] or check out all the items that are
being created from a nib or storyboard by breaking on an initWithCoder: method.

Advanced Apple Debugging Chapter 19: Script Bridging Classes and Hierarchy

raywenderlich.com 287

20
Chapter 20: Script Bridging
with Options & Arguments

When you’re creating a custom debugging command, you’ll often want to slightly tweak

functionality based upon options or arguments supplied to your command. A custom

LLDB command that can do a job only one way is a boring one-trick pony.

In this chapter, you’ll explore how to pass optional parameters (aka options) as well as

arguments (parameters which are expected) to your custom command to alter

functionality or logic in your custom LLDB scripts.

You’ll continue working with the bar (“break-after-regex”) command you created in the

previous chapter. In this chapter, you’ll finish up the bar command by adding logic to

handle options in your script.

By the end of this chapter, the bar command will have logic to handle the following

optional parameters:

• Non-regular expression search: Using the -n or --non_regex option will result in

the bar command using a non-regular expression breakpoint search instead. This

option will not take any additional parameters.

• Filter by module: Using the -m or --module option will only search for breakpoints

in that particular module. This option will expect an additional parameter which

specifies the name of the module.

• Stop on condition: Using the -c or --condition option, the bar command will

evaluate the given condition after stepping out of the current function. If True,

execution will stop. If False, execution will continue. This option will expect an

additional parameter which is a string of code that will be executed and evaluated as

an Objective-C BOOL.

This will be a dense but fun chapter. Make sure you’ve got a good supply of caffeine!

raywenderlich.com 288

Setting up
If you’ve gone through the previous chapter and your bar command is working, then

you can continue using that script and ignore this part. Otherwise, head on over to the

starter folder in this chapter’s resources, and copy the BreakAfterRegex.py file into

your ~/lldb folder. Make sure your ~/.lldbinit file has the following line which you

should have from the previous chapter:

command script import ~/lldb/BreakAfterRegex.py

If you've any doubts if this command loaded successfully into LLDB, simply fire up a

new LLDB instance in Terminal:

lldb

Then check for the help docstring of the bar command:

(lldb) help bar

If you get an error, it’s not successfully loaded; but if you got the docstring, you’re

golden.

The RWDevCon project
For this chapter, you’ll use an app called RWDevcon. It’s a live app, available in the App

Store (https://itunes.apple.com/us/app/rwdevcon-the-tutorial-conference/

id958625272).

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 289

This app is the companion app for the RWDevcon conference, https://

www.rwdevcon.com/, where it’s an annual tradition to see how many times you can

touch Ray Wenderlich’s shoulders before he gets annoyed. Try it! My personal best is

37!

For this project, I’ve forked from commit 84167c68 which can be found in the starter

folder. However, you can get a more up-to-date version here: https://github.com/

raywenderlich/RWDevCon-App.

Navigate to the starter folder then open, build, then run this application. Take a look

around to get acquainted with the project.

There’s no need to explore any of the source code. With the aid of the bar command,

you’ll be able to explore different items of interest with smart breakpoint queries.

But before we can do that, let’s talk about how to make this bar command much more

powerful.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 290

The optparse Python module
The lovely thing about LLDB Python scripts is you have all the power of Python — and

its modules — at your disposal.

There are three notable modules that ship with Python 2.7 that are worth looking into

when parsing options and arguments: getopt, optparse, and argparse.

getopt is kind of low level and optparse is on its way out since it’s been deprecated

after Python 2.7. Unfortunately argparse is mostly designed to work with Python’s

sys.argv — which is not available to your Python LLDB command scripts. This means

optparse will be your go-to option. Facebook’s Chisel, Apple’s own custom LLDB

scripts, and I all use this module. So, it’s kinda the de-facto standard for parsing

arguments. ;]

The optparse module will let you define an instance of type OptionParser, a class

responsible for parsing all your arguments. For this class to work, you need to declare

what arguments and options your command supports. This makes sense because

optional parameters may or may not take additional values for that particular option.

Take a brief look at an example. Consider the following:

some_command woot -b 34 -a "hello world"

The command is named some_command. But what are the arguments and options being

passed into this command?

If you didn’t give any context to the parser, then this statement is ambiguous. The

parser doesn’t know whether or not the -b or -a option should take in parameters for

the option. For example, the parser could think this command is passed three

arguments: ['woot', '34', 'hello world'], and two options -b, -a with no

parameters. However, if the parser expected -b and -a to take parameters, the parser

would give you the argument of ['woot'], '34' for the -b option and 'hello world' for

-a.

Let’s dive into optparse some more, and see how we can use it to handle cases like this.

Adding options without params
With the knowledge you need to educate your parser with what arguments are
expected, it’s time to add your first option which will alter the functionality of the bar
command to apply the SBBreakpoint without using a regular expression, but instead

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 291

use a normal expression.

This argument will be backed by a Python boolean value, so no parameters are needed

for this option. The existence (or lack thereof) of this option is all the information you

need to determine the boolean value. If the argument exists, then it’ll be True.

Otherwise, False.

It’s worth noting some script authors will engineer an option that will encourage a

boolean option which explicitly requires a parameter for the Boolean value and default

to either True or False if the option is not supplied.

For example, the following command takes an option, -f with no parameters:

some_command -f

This would then turn into:

some_command -f1

That’s not really my style. But you might want to consider this design decision if you’re

building scripts for a wider audience, since it gives the user more explicit intentions.

Ok, enough chit-chat. Let’s get to implementing this parser thing.

Open up BreakAfterRegex.py and add the following import statements at the top of

the file:

import optparse
import shlex

The optparse is the module you just covered that contains the OptionParser class to

parse any extra input given to your command.

The shlex module has a nice little Python function that conveniently splits up the

arguments supplied to your command on your behalf while keeping string arguments

intact.

For example, consider the following Python code:

import shlex
command = '"hello world" "2nd parameter" 34'
shlex.split(command)

This will produce the following output:

['hello world', '2nd parameter', '34']

This returns a Python list of parsed Python strs.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 292

But before you go using this split method, you’ll need to create the parser itself. Head

to the very bottom of BreakAfterRegex.py and create the following method:

def generateOptionParser():
 '''Gets the return register as a string for lldb
 based upon the hardware
 '''
 usage = "usage: %prog [options] breakpoint_query\n" +\
 "Use 'bar -h' for option desc"
 # 1
 parser = optparse.OptionParser(usage=usage, prog='bar')
 # 2
 parser.add_option("-n", "--non_regex",
 # 3
 action="store_true",
 # 4
 default=False,
 # 5
 dest="non_regex",
 # 6
 help="Use a non-regex breakpoint instead")
 # 7
 return parser

Let’s break this down, parameter by parameter:

1. You’re creating the OptionParser instance and supplying it a usage param and a

prog param. The usage will get displayed if you screw up and give the parser an

argument it doesn’t know how to handle. The prog option is used to address the

name of the program. I always incorporate it because it resolves a weird little issue

which lets you run the -h or --help option to get all the supported options for a

custom command. If the prog arg is not in there, the -h command will not work

correctly. It’s one of life’s little mysteries. ¯_()_/¯

2. This line (followed by the next four lines of non-commented code) add the --

non_regex or -n parameter to the parser.

3. The action param informs what action should be done when this param is supplied.

"store_true" informs the parser to store the Python Boolean True when this option

is supplied.

4. The default param informs that the initial value will be False. If this option is not

given, this will be the value.

5. The dest parameter will determine the name, non_regex, that you’re giving to the

property when the OptionParser parses your input. For example, consider the

following code which parses a Python string of options and arguments in command:

command_args = shlex.split(command)

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 293

(options, args) = parser.parse_args(command_args)
options.non_regex

As you’ll see shortly, the parse_args method produces a Python tuple containing a list

of options (called options) and a list of arguments (called args). The options variable

will now contain the non_regex property.

6. help will give you help documentation. You can get all the parameters and their info

with the --help option. For example, when this is correctly set up in the bar

command, all you have to do is type bar -h to see a list of all the options and what

they do.

7. Once you’ve created the OptionParser and added the -n option, you’re returning the

instance of the OptionParser.

You’ve just created a method that will generate this OptionParser instance you need to

start parsing those arguments. Now it’s time to use this thing.

Jump back to the beginning of the breakAfterRegex function. Remove the following two

lines:

target = debugger.GetSelectedTarget()
breakpoint = target.BreakpointCreateByRegex(command)

Then, in their place, add the following code:

'''Creates a regular expression breakpoint and adds it.
Once the breakpoint is hit, control will step out of the
current function and print the return value. Useful for
stopping on getter/accessor/initialization methods
'''

1
command = command.replace('\\', '\\\\')
2
command_args = shlex.split(command, posix=False)

3
parser = generateOptionParser()

4
try:
 # 5
 (options, args) = parser.parse_args(command_args)
except:
 result.SetError(parser.usage)
 return

target = debugger.GetSelectedTarget()

6

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 294

clean_command = shlex.split(args[0])[0]

7
if options.non_regex:
 breakpoint = target.BreakpointCreateByName(
 clean_command)
else:
 breakpoint = target.BreakpointCreateByRegex(
 clean_command)

The rest remains unchanged

Make sure you have your indentation correct! This should be indented by two spaces, or

whatever your single-tab width of choice is, as it’s all part of the function.

Here’s what that code does:

1. When parsing your input to the OptionParser, it will interpret slashes as escaping

characters. For example, "\'" is interpreted as just "'". This means you’ll need to

escape any backslash characters in your commands.

2. As you learned in a previous chapter, the command parameter passed into your

custom LLDB scripts is a Python str, which contains all input that is passed into

your argument. You’ll pass this variable into the shlex.split method to obtain a

Python list of Python strs. In addition, there’s that posix=False which helps

combat any input which contains special characters like a dash; otherwise,

OptionParser will incorrectly assume that’s an option being passed in. This is

important because Objective-C has dashes in instance methods, so you don't want

the dash to be incorrectly interpreted as an option!

3. Using the newly created generateOptionParser function, you create a parser to

handle the command’s input.

4. Parsing input can be error-prone. Python’s usual approach to error handling is

throwing exceptions. It’s no surprise that optparse throws if it finds an error. If you

don’t catch exceptions in your scripts, LLDB will go down, which will also tank the

process! Therefore, the parsing is contained in a try-except block to prevent LLDB

from dying due to bad input.

5. The OptionParser class has a parse_args method. You’re passing in your

command_args variable to this method, and will receive a tuple in return. This tuple

consists of two values: options, which consists of all option arguments (i.e. only the

non_regex option right now). The other half of the tuple hands you all of the args

which consists of any other input parsed by the parser.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 295

6. You’re taking the first captured argument (the breakpoint query) and assigning it to

a variable called clean_command. Remember that posix=False mentioned in bullet

2? That logic will maintain the quotes around your captured argument which

preserves your exact syntax. If you didn’t have that posix=False, you could just use

args[0], but then you’d forfeit a lot of power in your regex by not being able to use

the escape backslash character in your regex query.

7. You’re putting your first option to use! You’re checking the truthiness of

options.non_regex. If True, you’ll execute the BreakpointCreateByName method in

SBTarget to implement a non-regular expression breakpoint. If the non_regex is

False (by default it is when you supplied the default parameter inside the

generateOptionParser function), then your script will use a regex search. Again, all

you need to do is add the -n to your input for the bar command to make the

non_regex True.

Testing out your first option
Enough code. Time to test this script out.

Instead of using that reload_script command you’ve used in the previous chapters,

you’ll try an alternative tactic that you might appreciate to reload the script.

Jump to Xcode and create a new symbolic breakpoint.

Make sure the Breakpoint Navigator tab is selected, then hunt down that lonely + icon

in the lower left corner. Then select Symbolic breakpoint.... Alternatively for you cool

kids, ⌘ + Ctrl + \

In the Symbol section put getenv.

Add 2 actions. The first action adds the following command:

br dis 1

In the next action, add your bar command:

bar -n "-[NSUserDefaults(NSUserDefaults) objectForKey:]"

Finally select Automatically continue after evaluating actions.

When all is said and done, your symbolic breakpoint should look like this:

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 296

Can you figure out what you’ve just done? You’ve created a Symbolic breakpoint on the

getenv C function. If I want to setup breakpoints before “my” code starts executing, or

before reverse engineering an app, this is a good go-to to hook any logic for custom

commands you want in LLDB.

I’m not a fan of using main, since a lot of executables contain the function main, and the

primary executable’s main symbol might be stripped in a production build of an

executable. We know that getenv will get hit for sure and will get hit before my code

starts running.

What about those actions? The first action says to get rid of that getenv breakpoint.

You’re not deleting it; you’re just disabling it. This is ideal since getenv gets called a fair

bit and you need to get rid of this breakpoint once you’ve setup your LLDB logic. The

use of 1 is mentioned because this breakpoint is the first breakpoint created for this

session, which disables this symbolic breakpoint after it has run once.

After that, you’re creating a non regular expression breakpoint on NSUSerDefaults’s

objectForKey: method. We expect this method to return an id or nil, so let’s see what

this RWDevCon app is reading (or writing) to our NSUserDefaults.

Build and run the application.

If you haven’t taken a deep dive into the app, you’ll likely get a lot of nil values. This

means that this method is definitely getting read by some code in this app.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 297

Tap on any one of the workshops to bring up the detail view controller.

Before you continue, clear the LLDB window (⌘ + K).

From there, tap Add to my Schedule while keeping an eye on the console output.

You can see there’s an object that gets added to the NSUserDefaults that matches the

When time.

Adding options with params
You’ve learned how to add an option that expects no arguments. You’ll now add another

option that expects a parameter. This next option will be the --module option to specify

which module you want to constrain your regular expression query to.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 298

This is very similar to breakpoint set’s -s (aka --shlib option) option where it expects

the name of the module immediately after the option. You explored this back in

Chapter 4, “Stopping in Code”.

In the BreakAfterRegex.py script jump back down to the generateOptionParser

function and add the following code right before return parser:

1
parser.add_option("-m", "--module",
 # 2
 action="store",
 # 3
 default=None,
 # 4
 dest="module",
 help="Filter a breakpoint by only searching within a
specified Module")

1. You’re adding a new option -m or --module to the OptionParser instance.

2. In the previous option, the action was "store_true"; this time it is "store". This

means this option expects a parameter.

3. This parameter’s default value is None.

4. The name of this property will be module.

Jump back to the breakAfterRegex function and scan for the following lines:

if options.non_regex:
 breakpoint = target.BreakpointCreateByName(clean_command)
else:
 breakpoint = target.BreakpointCreateByRegex(clean_command)

Add options.module as the second parameter to both of these functions.

if options.non_regex:
 breakpoint = target.BreakpointCreateByName(clean_command,
options.module)
else:
 breakpoint = target.BreakpointCreateByRegex(clean_command,
options.module)

So how does this work? Let’s print out the method signature right now for

BreakpointCreateByRegex. Type the following in LLDB:

(lldb) script help (lldb.SBTarget.BreakpointCreateByRegex)

This will dump the small amount of documentation for this function. Although there is

no help documentation for this method, it does give you a list of its method signatures.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 299

The following signature is worth discussing:

BreakpointCreateByRegex(SBTarget self, str symbol_name_regex, str
module_name=None) -> SBBreakpoint

Take note of the final parameter: module_name=None. The fact it’s an optional parameter

means if you don’t supply a parameter, the module_name will take the value as None. This

means when the OptionParser instance parses the options, you can supply

options.module into the BreakpointCreateByRegex method regardless, since the default

value of options.module will be None, which is the same as not applying an extra

argument.

Time to test this out. Save your work in your script. Jump over to Xcode and modify that

getenv Symbolic breakpoint. Replace the second action with the following line of code:

bar @objc.*.init -m RWDevCon

Make sure that 'C' in 'Con' is capitalized!

This will create a regex breakpoint on all Objective-C objects that are subclassed by a

Swift object and stick a breakpoint on their initializer. You are filtering this breakpoint

query to only search for breakpoints inside the RWDevCon module.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 300

Run the application and check out all the Objective-C objects that are subclassed by

Swift objects.

Take a quick look at the output. You’ll get a lot of __ObjC.NSEntityDescription hits.

That must mean there’s some CoreData logic that’s written in Swift, right?

Right!

Clear the screen (you should know that shortcut by now) and tap on a table cell that

contains a workshop (i.e. no lunch or party dates) and see what pops up on the detail

view controller.

You’ll get a list of all the Objective-C objects that are subclassed by Swift. Search for the

class named Person.

Copy the address into your clipboard.

Before you paste in your address, let’s dump all the methods implemented by this

Person class. Since it’s an Objective-C subclass, it’s fair game to all those introspection

commands you’ve made earlier.

In LLDB type the following:

(lldb) methods Person

This will dump all the methods the Person class implements that the Objective-C

runtime knows about. Note that I said Objective-C runtime. There still could be Swift

methods that this class implements that the Objective-C runtime doesn't know about

even if the class inerhits from NSObject!

You can of course execute any of these methods on this valid Person instance.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 301

Let’s up the ante. You'll now create an option in the bar command that will allow you to

add a condition, evaluated after the function the breakpoint is in finishes executing. If

true, execution will stop; if false, execution will keep on going.

You’ll apply this condition to fullName and only stop when you hit the name “Ray

Wenderlich". Sneaky!

Passing parameters into the breakpoint
callback function
Time to create the parser option for -c, or --condition!

Jump back to BreakAfterRegex.py and find generateOptionParser. Add the following

line of code right before the return parser line of code:

parser.add_option("-c", "--condition",
 action="store",
 default=None,
 dest="condition",
 help="Only stop if the expression matches True. Can
reference return value through 'obj'. Obj-C only.")

You should know what this is doing now, but here’s a quick recap. You’re creating the --

condition option which defaults to None and expects a parameter. The help text has

something interesting in there. You’re indicating you can reference the return value

through the variable name obj. This means when you're evaluating code, you’ll take the

return register and assign obj to it.

Time to use this new option. But hold on... Think about this for a second. How are you

going to pass the option parameters into the SBBreakpoint callback function?

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 302

Remember, this callback function is being called by a “private” C++ API and is limited to

a specific method signature. Consider the following declaration where you set the

breakpoint handler:

breakpoint.SetScriptCallbackFunction("BreakAfterRegex.breakpointHandler")

When the SBBreakpoint callback hits, this function will get called:

def breakpointHandler(frame, bp_loc, dict):
 # method contents here

You only have the SBFrame, SBBreakpointLocation, and an internal Python dict to work

with to pass around information. How can this function read the parameters which are

parsed by your OptionParser instance and be given into another function? This

function signature is locked-in to only supply these parameters.

Several ideas come to mind to get around this problem. You can search for alternatives

in SBBreakpoint or similar classes to see if there’s an API that lets you pass in other

params.

Alternatively, you can try and subclass a SBBreakpoint to add additional functionality

to pass around the condition option parameter, or you can try using a global variable to

pass around the parsed options. If you’re really desperate, you can try and dynamically

creating a method at runtime using the exec Python function.

Unfortunately, SBBreakpoint has no APIs to handle working with classes and callbacks,

global variables are a bad idea in general and you could also run into threading

problems for stale logic if multiple breakpoint callbacks are referencing a global set of

options.

Subclassing won’t work, since this Python LLDB class is dynamically generated behind

the scenes by C++ code, and you’ll get a new instance each time when trying to access

the passed around SBBreakpoint. Besides, 99% of the time, using exec is just a bad, bad

idea.

What’s a developer to do?

This means you’ll have to default to using global variables and deal with the global

variable state. Consider the following situation. You assign the options to a global

variable and create SBBreakpoint 1. You do the exact same thing for SBBreakpoint 2.

However, SBBreakpoint 1 gets triggered and the callback function is called, which

references the global options. Since SBBreakpoint 2 was created, it has since modified

these options to the incorrect expectation.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 303

Fortunately, there’s a slightly better alternative to using global variables, and you’ll
come up with a sneaky solution to resolve the global state of the options.

Instead of a global variable, you’ll create a Python class, which will have a class

property to hold the options being passed around.

Now to address that global state: instead of a property to hold the options, you’ll use a

Python dict to hold the options.

The nice thing about breakpoints is regardless of how many you create or delete, each

breakpoint will have a unique ID per run session. This means you can use the

breakpoint’s ID as a unique key to reference a particular set of options for each

breakpoint.

You can then set the breakpoints ID as the key and the options for that breakpoint as

the value. Cool, right?

Jump to the top of BreakAfterRegex.py and add the following logic right underneath

the import statements:

1
class BarOptions(object):

 # 2
 optdict = {}

 # 3
 @staticmethod
 def addOptions(options, breakpoint):
 key = str(breakpoint.GetID())
 BarOptions.optdict[key] = options

Going over this step-by-step:

1. You’re declaring a class named BarOptions which inherits from type object. Think

of object as Python’s equivalent for NSObject. This class provides base functionality

and generally makes your life a little easier. It’s absolutely possible to not have a

base class (just like in Swift), but some Python APIs play a little nicer when

inheriting from object.

2. You’re declaring a class variable named optdict. If you were to declare an instance

variable, it would have to be inside an init function. Since you’re only working with

this class variable, you won’t be setting up any initialization methods for this class.

3. You’re also declaring a class method called addOptions (think +[in Objective-C or

class func in Swift), which uniquely assigns the options that are bound to the

SBBreakpoint’s ID.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 304

Jump down to breakAfterRegex and add the following line of code right before the point
where you specify the callback function (i.e. the call to SetScriptCallbackFunction):

BarOptions.addOptions(options, breakpoint)

After you’ve added this new line of code, create a new function to evaluate the

condition. Add the new function evaluateCondition to the bottom of

BreakAfterRegex.py:

def evaluateCondition(debugger, condition):
 '''Returns True or False based upon the supplied condition.
 You can reference the NSObject through "obj"'''

 # 1
 res = lldb.SBCommandReturnObject()
 interpreter = debugger.GetCommandInterpreter()
 target = debugger.GetSelectedTarget()

 # 2
 expression = 'expression -lobjc -O -- id obj = ((id){}); ((BOOL)
{})'.format(getRegisterString(target), condition)
 interpreter.HandleCommand(expression, res)

 # 3
 if res.GetError():
 print(condition)
 print('*' * 80 + '\n' + res.GetError() + '\ncondition:' + condition)
 return False
 elif res.HasResult():
 # 4
 retval = res.GetOutput()

 # 5
 if 'YES' in retval:
 return True

 # 6
 return False

Breaking that down:

1. You’re creating a SBCommandReturnObject to handle the code being passed in from

the condition parameter.

2. This will create and execute the custom expression that’s being passed in. Notice

you’re declaring the instance variable obj and casting it to type id from the return

register. This lets you conveniently reference the return value as obj instead of a

hardware-specific register. The expression you provide will be cast into an

Objective-C BOOL, which will either return a YES or NO output.

3. You’ll evaluate the return value, and if it contains an error, print the error out.
You’re explicitly returning False or True within this function because you’ll use this

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 305

return value to determine if execution should stop or not when evaluating this
expression. Remember, the SBBreakpoint callback function breakpointHandler will
stop execution if the function returns True. Execution will not stop if not True (i.e.
False, None or no return) is returned.

4. This will assign the output to a variable named retval if there is one to grab.

5. It really pains me to teach expression parsing this way, since there’s a much cleaner

method of evaluating objects using SBValues, which you’ll learn about in the next

chapter. For now, you’ll continue using the SBCommandReturnObject and compare

the output to what you expect. If the expression is evaluated to YES, then pause

execution.

6. If the execution returns NO, then just keep on executing by returning False.

Final round of code! Find breakpointHandler function. Add the following code beneath

the thread.StepOut() call:

1
key = str(bp_loc.GetBreakpoint().GetID())
2
options = BarOptions.optdict[key]
3
if options.condition:
 # 4
 condition = shlex.split(options.condition)[0]
 # 5
 return evaluateCondition(debugger, condition)

Last explanation. Yay!

1. The bp_loc is of type SBBreakpointLocation. This class lets you reference the initial

SBBreakpoint by the GetBreakpoint method. From there, you can reference the ID,

which will be a number. Therefore, you need to cast this number as a Python str

and assign that to the variable key.

2. This will grab the options from the class property optdict and assign it to the

variable options.

3. Check if the options variable contains a non-None reference. If there’s a valid

reference, execute the logic.

4. This will unwrap the condition passed into the command line option. Again, you

have to do a little extra work thanks to that posix=False mentioned earlier, but it

allows you to use backslash and dash characters in our options & arguments.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 306

5. Finally, you’re calling the function evaluateCondition you created in the previous

code snippet. You are returning the function’s return value which will influence if

execution should stop or not.

No more Python code (well, for this chapter...muwahahaha)! Save your work and head

back to Xcode.

Again, modify the second action in the getenv symbolic breakpoint. This time, change it

to the following:

bar NSURL\(.*init

This will breakpoint will now fire on the initialization of NSURLs. That weird syntax is

necessary because the majority of NSURL initialization methods are created through

categories.

Scan for any HTTPS NSURLs in the console output.

Looks like the app is hitting some Amazon S3 webservice. Use the newly created --

condition option of the bar command you’ve just created to stop when an NSURL

returns from initialization and contains "amazon" in the absoluteString.

Go back after the getenv symbolic breakpoint and change the second action yet again to

the following:

bar NSURL\(.*init -c '(BOOL)[[obj absoluteString]
containsString:@"amazon"]'

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 307

Build and run and see what happens...

Execution will stop on the exact line containing this NSURL ... er... URL, since it stopped

in the Swift context. But let’s be real, that instance is a NSURL.

Real world example: exploring Swift
return Strings with bar
Evaluating the return value of a Swift object in an Objective-C context is much harder,

but still doable.

You’re going to try another example. Do you remember that fullName method in the

Person class? I want you to stop only when that fullName method returns the name Ray

Wenderlich. I’ve heard through the grapevine that Ray gave a talk at this conference, so

let’s see how we can use the bar command to figure this out.

But before you go about changing our getenv symbolic breakpoint, you need to do a dry

run. You see, Swift doesn’t like you knowing about pointers, and working with Swift

strings can be a lot like working with actual char * or unichar *, depending on the

context.

Temporarily disable the getenv symbolic breakpoint by clicking on the breakpoint icon.

Print the first 16 lines of Person.swift. In LLDB, type the following:

(lldb) source list -f Person.swift -c 16

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 308

You’ll get the following output:

 1
 2 import Foundation
 3 import CoreData
 4
 5 @objc(Person)
 6 class Person: NSManagedObject {
 7 @NSManaged var first: String
 8 @NSManaged var last: String
 9 @NSManaged var bio: String
 10 @NSManaged var twitter: String
 11 @NSManaged var identifier: String
 12 @NSManaged var active: Bool
 13 @NSManaged var sessions: NSSet
 14
 15 var fullName: String {
 16 return "\(first) \(last)"
 17 }

Looking at the fullName, you can see it’s a computed property that only has a getter.

This means that you can go after the getter syntax of a Swift property.

Type the following in LLDB:

(lldb) rb fullName.getter

You’ll get the breakpoint: RWDevCon.Person.fullName.getter : Swift.String. Click on

a workshop to trigger this breakpoint. In my case, I’ve clicked on the Advanced

Debugging & Reverse Engineering workshop, ’cause it sounds relevant to my

interests:

The executable will stop as the getter method of the fullName is triggered.

In LLDB, step out of this function:

(lldb) finish

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 309

Inspect the return value. If x64, that’s RAX; if AARCH64, that’s X0. When in doubt, just

try po’ing the register in the Objective-C context to see what happens.

(lldb) expression -lobjc -O -- $rax

Hmm... you’ll just get some “random number”:

105553116755808

Again, the base address of Swift strings can be thought of a C char * or unichar *.

They’re a little bit more complicated than that, which you’ll understand more in the

next chapter.

Start with a char *. Cast it to a C char * to see if that works:

(lldb) expression -lobjc -O -- (char *)$rax

You’ll get the following:

"D"

There’s something fishy going on. Inspect the memory address pointed at by the RAX

register.

(lldb) memory read $rax

Note: A newly introduced Swift LLDB bug starting around lldb-900.0.57 (and
might still be by the time you read this) will not let you execute the memory read
command on a register in a Swift frame. To get around this, you can grab the
actual value from (lldb) register read rax, then replace the $rax part with the
actual address for memory read

You’ll get output similar to the following:

0x600000077760: 44 00 65 00 72 00 65 00 6b 00 20 00 53 00 65 00
0x600000077770: 6c 00 61 00 6e 00 64 00 65 00 72 00 01 00 00 00

D.e.r.e.k. .S.e.l.a.n.d.e.r.....

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 310

Ahah! This isn’t a char *, it’s a unichar *! Those padded 0x00s mean it’s Unichar, but if

cast as a char, then it thinks the string has ended. Cast it appropriately in LLDB:

(lldb) expression -lobjc -O -- (unichar *)$rax

You’ll get the following output:

u"Derek Selander\x01"

This means you can take this address, use one of NSString’s APIs to transform the

Unichar into a NSString and then compare it with the proper query.

That means you get to use this lovely API though...

- (instancetype)initWithBytes:(const void *)bytes
 length:(NSUInteger)len
 encoding:(NSStringEncoding)encoding;

You have the starting address (in the return register). You need to figure out the length

and encoding. The length can be determined using LLDB. Type the following:

po strlen("Derek Selander") * 2

You’re getting the length of the string and multiplying it by 2 since it covers twice the

amount of bytes with UTF16. You’ll get 28 for output.

While you’re at it, also get the length of Ray Wenderlich’s name in Unichar length:

po strlen("Ray Wenderlich") * 2

Cool, you can use 28 for both the test and the actual bar script.

Now to deal with that encoding...

Open up a new Terminal window and type the following:

open -h NSString.h

This will pop up the header file for NSString.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 311

Search for the numerical representation that represents

NSUTF16LittleEndianStringEncoding. The numerical value of this enum will be the

correct encoding you need.

It looks like the correct value you need is 0x94000100. I couldn’t have guessed that off

the top of my head.

You now have all the pieces you need. Jump back to the LLDB console window and type

the following:

(lldb) e -lobjc -O -- [[NSString alloc] initWithBytes:$rax length:28
encoding:0x94000100]

Wow! That worked! Now you can run your NSString queries!

You’ve got the info you need to make your action. Head back to the getenv symbolic

breakpoint and give this full expression.

bar fullName.getter -c '[[[NSString alloc] initWithBytes:obj length:28
encoding:0x94000100] containsString:@"Ray Wenderlich"]'

Make sure you have zero typos or you'll be a sad panda. Oh, and re-enable the

breakpoint now as well!

Build, run, and start navigating. Click on a random event to make sure the execution

doesn’t stop.

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 312

Jump to the Saturday schedule with the 8:00 AM slot (Ray is quite the fan of early
morning activities). Select Server Side Swift with Perfect and see what happens.

If you typed in your breakpoint correctly, control will stop on the fullName getter

method containing "Ray Wenderlich".

Where to go from here?
That was pretty intense, but you’ve learned how to incorporate options into your own

Python scripts.

In the very unlikely chance you still have energy after reading this chapter, you should

implement some sort of backtrace option for the bar command. There are many times,

when debugging, where I wish I’d known the stack trace of an interesting object!

Advanced Apple Debugging Chapter 20: Script Bridging with Options & Arguments

raywenderlich.com 313

21
Chapter 21: Script Bridging
with SBValue & Memory

So far, when evaluating JIT code (i.e. Objective-C, Swift, C, etc. code that’s executed

through your Python script), you’ve used a small set of APIs to evaluate the code.

For example, you’ve used SBDebugger and SBCommandReturnObject’s HandleCommand

method to evaluate code. SBDebugger’s HandleCommand goes straight to stderr, while

you have a little more control over where the SBCommandReturnObject result ends up.

Once evaluated, you had to manually parse the return output for anything of interest.

This manual searching of the output from the JIT code is a bit unsightly. Nobody likes

stringly typed things!

So, it’s time to talk about a new class in the lldb Python module, SBValue, and how it

can simplify the parsing of JIT code output.

Open up the Xcode project named Allocator in the starter folder for this chapter. This

is a simple application which dynamically generates classes based upon input from a

text field.

raywenderlich.com 314

This is accomplished by taking the string from the text field and using it as an input to

the NSClassFromString function. If a valid class is returned, it’s initialized using the

plain old init method. Otherwise, an error is spat out.

Build and run the application on any iOS 11 Simulator. You’ll make zero modifications

to this project, yet you’ll explore objects’ layouts in memory through SBValue, as well as

manually with pointers through LLDB.

A detour down memory layout lane
To truly appreciate the power of the SBValue class, you’re going to explore the memory

layout of three unique objects within the Allocator application. You’ll start with an

Objective-C class, then explore a Swift class with no superclass, then finally explore a

Swift class that inherits from NSObject.

All three of these classes have three properties with the following order:

• A UIColor called eyeColor.

• A language specific string (String/NSString) called firstName.

• A language specific string (String/NSString) called lastName.

Each instance of these classes is initialized with the same values. They are:

• eyeColor will be UIColor.brown or [UIColor brownColor] depending on language.

• firstName will be "Derek" or @"Derek" depending on language.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 315

• lastName will be "Selander" or @"Selander" depending on language.

Objective-C memory layout
You’ll explore the Objective-C class first, as it’s the foundation for how these objects are

laid out in memory. Jump over to the DSObjectiveCObject.h and take a look at it. Here

it is for your reference:

@interface DSObjectiveCObject : NSObject

@property (nonatomic, strong) UIColor *eyeColor;
@property (nonatomic, strong) NSString *firstName;
@property (nonatomic, strong) NSString *lastName;

@end

As mentioned earlier, there are three properties: eyeColor, firstName, and lastName in

that order.

Jump over to the implementation file DSObjectiveCObject.m and give it a gander to

understand what’s happening when this Objective-C object is initialized:

@implementation DSObjectiveCObject

- (instancetype)init
{
 self = [super init];
 if (self) {
 self.eyeColor = [UIColor brownColor];
 self.firstName = @"Derek";
 self.lastName = @"Selander";
 }
 return self;
}
@end

Nothing too crazy. The properties will be initialized to the values just described above.

When this is compiled, this Objective-C class will actually look like a C struct. The

compiler will create a struct similar to the following pseudocode:

struct DSObjectiveCObject {
 Class isa;
 UIColor *eyeColor;
 NSString *firstName
 NSString *lastName
}

Take note of the Class isa variable as the first parameter. This is the magic behind an
Objective-C class being considered an Objective-C class. This isa value is always the
first value in an object instance’s memory layout, and is a pointer to the class the object

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 316

is an instance of. After that, the properties are added to this struct in the order they
were written in your source code.

Let’s see this in action through LLDB. Perform the following steps:

1. Make sure the DSObjectiveCObject is selected in the UIPickerView.

2. Tap on the Allocate Class button.

3. Once the reference address is spat out in the console, copy that address to your

clipboard.

4. Pause execution and bring up the LLDB console window.

An instance of the DSObjectiveCObject has been created. You’ll now use LLDB to

spelunk into offsets of this object’s contents.

Copy the memory address from the console output and make sure po’ing it will give you

a valid reference (e.g. you’re not stopped on a Swift stack frame when printing out this

address).

For my case, I got the pointer 0x600000031f80. As always, yours will be different. Print

out the address through LLDB:

(lldb) po 0x600000031f80

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 317

You should get this expected line of output:

<DSObjectiveCObject: 0x600000031f80>

Since this can be treated as a C struct, you’ll start spelunking into offsets of this

pointer’s contents.

In the LLDB console, type the following (replacing the pointer with yours):

(lldb) po *(id *)(0x600000031f80)

This casts the pointer to a pointer to an id and then dereferences it. This will access the

object’s isa pointer.

You should see this output:

DSObjectiveCObject

That’s the class object’s description, as expected.

Let’s look at another way of viewing this memory. Use the x command (aka examine, a

port from GDBs popularity with this command) to jump to the starting pointer, then po

it. Enter the following:

(lldb) x/gx 0x600000031f80

This command says the following:

• Examine the memory (x)

• Print out the size of a giant word, (64 bits, or 8 bytes) (g)

• Finally, format it in hexadecimal (x).

If, hypothetically, you only wanted to view the first byte at this location in binary

instead, you could type x/bt 0x600000031f80 instead. This would be interpreted as

examine (x), a byte (b) in binary (t). The examine command is definitely one of those

nice commands to keep in your toolkit when exploring memory.

You’ll see the following output (or at least, similar output, as the values will be different

for you):

0x600000031f80: 0x0000000108b06568

This gives you output that tells you the value at memory address 0x600000031f80

contains 0x0000000108b06568. Well, it does for me!

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 318

Jumping back to the task at hand, take the address printed out by the x/gx command

and print out this new address using po.

(lldb) po 0x0000000108b06568

Once again, this will print out the isa class, which is the DSObjectiveCObject class. This

is an alternative way to print out the isa instance, which might give more insight into

what’s happening. However, that took two LLDB commands instead of one, so you’ll

stick to dereferencing the pointer and not use the x/gx command.

Let’s jump a little further into the eyeColor property. In the LLDB console:

(lldb) po *(id *)(0x600000031f80 + 0x8)

This says “start at 0x600000031f80 (or equivalent), go up 8 bytes and get the contents

pointed at by this pointer.” You’ll get the following output:

UIExtendedSRGBColorSpace 0.6 0.4 0.2 1

How did I get to the number 8? Try this out in LLDB:

(lldb) po sizeof(Class)

The isa variable is of type Class. So by knowing how big a Class is, you know how much

space that takes up in the struct, and therefore you know the offset of eyeColor.

Note: When working with 64-bit architectures (x64 or ARM64), all pointers will be
8 bytes. In addition, the Class class itself is 8 bytes. This means in 64-bit
architecture, all you need to do to move between different types is jump by 8
bytes!

There are types which are different sizes in bytes, such as int, short, bool and
others, and the compiler may pad that memory to fit into a predefined size 8 byte
size on 64-bit architectures. However, there’s no need to worry about that for now,
since this DSObjectiveCObject class only contains pointers to NSObject subclasses,
along with the Class object held in the isa variable.

Keep on going. Increment the offset by another 8 bytes in LLDB:

(lldb) po *(id *)(0x600000031f80 + 0x10)

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 319

You’re adding another 8 to get 0x10 in hexadecimal (or 16 in decimal). You’ll get

@"Derek", which is the contents of the firstName property. Increment by yet another 8

bytes to get the lastName property:

(lldb) po *(id *)(0x600000031f80 + 0x18)

You’ll get @"Selander". Cool, right?

Let’s visually revisit what you just did to hammer this home:

You started at a base address that pointed to the instance of DSObjectiveCObject. For

this particular example, this starting address is at 0x600000031f80. You started by

dereferencing this pointer, which gave you the isa variable, then you jumped by offsets

of 8 bytes to the next Objective-C property, dereferenced the pointer at that offset, cast

it to type id and spat it out to the console.

Spelunking memory is a fun and instructional way to see what’s happening behind the

scenes. This lets you appreciate the SBValue class even more. But you’re not at the point

of talking about the SBValue class, as you still have two more classes to explore. The

first is a Swift class with no superclass, and the second is a Swift class which inherits

from NSObject. You’ll explore the non superclass Swift object first.

Swift memory layout with no superclass

Note: It’s worth mentioning right up front: the Swift ABI is still fluctuating. This
means the information below could change before the Swift ABI completes. The
day a new version of Xcode breaks the information in the following section, feel
free to complain in ALL CAPS in the forums!

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 320

Time to explore a Swift class with no superclass! In the Allocator project, jump to

ASwiftClass.swift and take a look at what’s there.

class ASwiftClass {
 let eyeColor = UIColor.brown
 let firstName = "Derek"
 let lastName = "Selander"

 required init() { }
}

Here, you have the Swift equivalent for DSObjectiveCObject with the obvious “Swifty”

changes.

Again, you can imagine this Swift class as a C struct with some interesting differences

from its Objective-C counterpart. Check out the following pseudocode:

struct ASwiftClass {
 Class isa;
 uint64_t refCounts;

 UIColor *eyeColor;

 struct _StringCore {
 uintptr_t _baseAddress;
 uintptr_t _countAndFlags;
 uintptr_t _owner;
 } firstName;

 struct _StringCore {
 uintptr_t _baseAddress;
 uintptr_t _countAndFlags;
 uintptr_t _owner;
 } firstName;
}

Pretty interesting right? You still have that isa variable as the first parameter.

After the isa variable, there’s 8 bytes reserved for a refCounts variable. This differs to

your typical Objective-C object which doesn’t contain this reference counter at this

offset. Note the uint64_t type, which indicates that 8 bytes are reserved — even in a 32

bit platform. This differs from the uintptr_t, which will be 32 bit or 64 bit depending

on the hardware.

Next, you have the normal UIColor, but that’s where this ASwiftClass struct goes

completely off the rails.

A Swift String is a very interesting “object”. In fact, a Swift String is a struct within the

ASwiftClass struct.There’s three parameters for every Swift String when you’re

jumping around in memory:

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 321

• There is the actual pointer to the string’s character data.

• Following that are the length and flags mixed into one parameter; it could be

Unichar, ASCII, or some other crazy thing I don’t know how to interpret.

• Finally, you have a reference to any of its owners.

Since you are declaring these strings at compile time (with those let declarations),

there’s no need for owners since the compiler will only need to reference offsets to the

actual location of the strings, as they’re immutable.

This Swift String struct actually makes the assembly calling convention rather

interesting. If you pass a String to a function, it will actually pass in three parameters

(and use three registers) instead of a pointer to a struct containing the three

parameters (in one register). Don’t believe me? Check it out yourself when you’re done

with this chapter!

Back to LLDB and jumping through an object.

Clear the LLDB screen with a ⌘ + K, then resume the application through LLDB or the

Xcode GUI.

You’re going to do the exact same thing with the ASwiftClass that you did with

DSObjectiveCObject. Use the developer/designer “approved” UIPickerView and select

Allocator.SwiftClass. Remember, to correctly reference a Swift class (i.e. in

NSClassFromString and friends), you need the module name prepended to the

classname with a period separating the two.

Tap the Allocate Class button and copy the memory address spat out to the console.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 322

You’ll get something similar to the following:

<Allocator.ASwiftClass: 0x61800009d830>

Usually, Swift hides the pointer in the description and debugDescription methods, but

there’s something sneaky compiled into this project that you’ll come across in a second.

For now, grab that memory address and stick it in the clipboard.

First use LLDB to ensure it’s valid, by po-ing it:

(lldb) po 0x61800009d830

If you get something different than the following, you should be more than somewhat

surprised:

<Allocator.ASwiftClass: 0x61800009d830>

Even though this is a pure Swift object, you were able to get the dynamic description in

the Objective-C context. That means you can climb the class hierarchy to see the parent

class!

(lldb) po [0x61800009d830 superclass]

You’ll get an interesting class with the name of:

SwiftObject

You’ll explore this class more in a second. For now, start jumping around in memory.

Dereference the pointer’s address and prove to yourself that the first parameter is that

isa Class variable:

(lldb) po *(id *)0x61800009d830

You’ll get Allocator.ASwiftClass. Now check out that reference counter variable:

(lldb) po *(id *)(0x61800009d830 + 0x8)

You’ll get something similar to the following:

0x0000000000000002

It’s clear that the address here is not a Objective-C address, since *(id

*)0x0000000200000004 would point to a class if it were a valid instance/class. Instead,

this is the reference counter unique to Swift classes. Let’s see how this thing works.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 323

Use LLDB to manually retain this class:

(lldb) po [0x61800009d830 retain]

Press the up arrow twice to retrieve the previous command and execute it again:

(lldb) po *(id *)(0x61800009d830 + 0x8)

You’ll now get a slightly different number:

0x0000000200000002

Notice the middle hex value jumped up by 2. Shooting from the hip, this giant word

should actually be viewed as 2 separate integer (32-bit) fields instead of one 64-bit field.

See if release’ing this reference brings the count back down:

(lldb) po [0x61800009d830 release]

Yep, up arrow twice again, then Enter.

(lldb) po *(id *)(0x61800009d830 + 0x8)

You’ll get your happy, original value:

0x0000000000000002

Now that you’ve got past the isa and the refCounts it’s time to turn your attention to

those lovely properties in the ASwiftClass instance.

Clear the screen to start fresh, then increment your offset amount in LLDB.

(lldb) po *(id *)(0x61800009d830 + 0x10)

You’ll get the internal representation of UIColor’s brown:

UIExtendedSRGBColorSpace 0.6 0.4 0.2 1

Jump another 8 bytes and start exploring the firstName String structure.

(lldb) po *(id *)(0x61800009d830 + 0x18)
0x0000000101f850d0

As you saw in that pseudocode struct, this is the actual base address for the start of the

Swift string. Internally this base address can be viewed as a C char* or a C unichar*

(useful for all those ! emojis). So all you need to do is cast it to the correct type. Since

the Swift String "Derek" definitely falls in the ASCII realm, cast this address to a char*

instead of type id:

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 324

(lldb) po *(char* *)(0x61800009d830 + 0x18)
"Derek"

Now take a look at the _countAndFlags offset. Bump your offset to 0x20 and revert back

to using a casting type of id and keep on exploring. id is a good default, because it

resolves to an Objective-C object if it can, and to a hex address if it can’t.

(lldb) po *(id *)(0x61800009d830 + 0x20)

You’ll get the following:

0x0000000000000005

Again, this represents the flags and length. Since "Derek" is of length 5, you get 5 in the

least significant location of the hex value. The remaining zeroes indicate there are no

flags being applied (i.e. as the format for unichar instead of char).

Finally, up your offset amount and go after the _owner part of the Swift String:

(lldb) po *(id *)(0x61800009d830 + 0x28)

This will dump out nil since that’s the Objective-C equivalent of 0x0000000000000000.

As mentioned earlier, there’s no need for an “owner” since this string is created at

compile time.

No need to go after the lastName property. You’ve got the idea of how this works.

The SwiftObject class: a detour in the detour
But wait, you’ve totally overlooked the SwiftObject class, which was the superclass of

ASwiftClass! Let’s use image lookup to dump methods implemented by this class.

In LLDB, type the following:

(lldb) image lookup -rn SwiftObject

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 325

I don’t know about you, but I am tired of looking at that ugly formatting output. It’s too

hard to read it correctly. If you’ve made this far in this book, you know you have the

freedom to change anything necessary to make your life easier.

Use the lldb Python API to make a much prettier query:

(lldb) script srch = lldb.target.FindGlobalFunctions('SwiftObject', 0,
lldb.eMatchTypeRegex)

You’re declaring a search query which is of type SBSymbolContextList and assigned it to

srch. This is somewhat like a Python list of SBSymbolContext’s.

I’ll leave it to you to grab the documentation of FindGlobalFunctions by

gdocumentation’ing SBTarget.

Now type this into LLDB:

(lldb) script print "\n".join(map(lambda a: str(a.symbol.name), srch))

This applies a lambda to grab the function names and join each object in this list by a

newline.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 326

Much better. Maybe that would be a good script to write in an upcoming chapter.

OK, back to the goal at hand. You’re exploring the methods implemented by this

Objective-C-ish SwiftObject class. Since it’s using Objective-C code, it’s fair game for

method swizzling. Take note of the description and debugDescription methods

implemented by this SwiftObject.

The Allocator project is actually swizzling debugDescription on the SwiftObject to

alter the output and show the pointer for the SwiftObject subclass. This logic is found

in NSObject+DS_SwiftObject.m. The Swift language and the Swift LLDB context go out

of their way to hide this pointer, which can be quite annoying.

The dumped output means any Swift class is still open for swizzling and Objective-C

funtime er... runtime amusement, whether it inherits from NSObject, or from no

superclass at all. It’s good to keep this in mind for security reasons within your

application.

Swift memory layout with NSObject superclass
Final one. You know the drill, so we’ll speed this one up a bit and skip the actual

debugging session.

Check out the sourcecode for ASwiftNSObjectClass.swift:

class ASwiftNSObjectClass: NSObject {

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 327

 let eyeColor = UIColor.brown
 let firstName = "Derek"
 let lastName = "Selander"

 required override init() { }
}

It’s the same thing as the ASwiftClass, except it inherits from NSObject instead of from

nothing.

So is there any difference in the generated C struct pseudocode?

struct ASwiftNSObjectClass {
 Class isa;
 uintptr_t referenceCounts;

 UIColor *eyeColor;

 struct _StringCore {
 uintptr_t _baseAddress;
 uintptr_t _countAndFlags;
 uintptr_t _owner;
 } firstName;

 struct _StringCore {
 uintptr_t _baseAddress;
 uintptr_t _countAndFlags;
 uintptr_t _owner;
 } firstName;
}

Nope! There’s no struct pseudocode difference when compared to the ASwiftClass. The

main difference is it’s a lot easier to introspect this class since NSObject implements far

more methods than the SwiftObject class.

Let’s skip the debugging session and just talk about what will happen when you try

retain’ing an instance of this class: the refCounts variable will not be modified. This

makes sense because Objective-C has its own implementation of retain/release that’s

different from the Swift implementation.

You can finally look at the SBValue class I’ve been itching to describe to you!

SBValue
Yay! Time to talk about this awesome class.

SBValue is responsible for interpreting the parsed expressions from your JIT code. Think
of SBValue as a representation that lets you explore the members within your object,
just as you did above, but without all that ugly dereferencing. Within the SBValue

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 328

instance, you can easily access all members of your struct... er, I mean, your Objective-C
or Swift classes.

Within the SBTarget and SBFrame class, there’s a method named EvaluateExpression,

which will take your expression as a Python str and return an SBValue instance. In

addition, there’s an optional second parameter that lets you specify how you want your

code to be parsed. You’ll start without the optional second parameter, and explore it

later.

Jump back into the LLDB console and make sure the Allocator project is still running.

Make sure the LLDB console is up (i.e. the program is paused), clear the console and

type the following:

(lldb) po [DSObjectiveCObject new]

You’ll get something similar to the following:

<DSObjectiveCObject: 0x61800002eec0>

This ensures you can create a valid instance of a DSObjectiveCObject.

This code works, so you can apply it to the EvaluateExpression method of either the

global SBTarget or SBFrame instance:

(lldb) script lldb.frame.EvaluateExpression('[DSObjectiveCObject new]')

You’ll get the usual cryptic output with the class but no context to describe what this

does:

<lldb.SBValue; proxy of <Swig Object of type 'lldb::SBValue *' at
0x10ac78b10> >

You’ve got to use print to get context for these classes:

(lldb) script print lldb.target.EvaluateExpression('[DSObjectiveCObject
new]')

You’ll get your happy debugDescription you’ve become accustomed to.

(DSObjectiveCObject *) $2 = 0x0000618000034280

Note: If you mistype something, you’ll still get an instance of SBValue, so make
sure it’s printed out the item you expect it should. For example, if you mistyped
the JIT code, you might get something like ** = <could not resolve type>**
from the SBValue.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 329

You can verify the SBValue succeeded by checking the SBError instance within
your SBValue. If your SBvalue was named sbval, you could do
sbval.GetError().Success(), or more simply sbval.error.success. print as a
quick way to see if it worked or not.

Modify this command so you’re assigning it to the variable a inside the Python context:

(lldb) script a = lldb.target.EvaluateExpression('[DSObjectiveCObject
new]')

Now apply the Python print function to the a variable:

(lldb) script print a

Again, you’ll get something similar to the following:

(DSObjectiveCObject *) $0 = 0x0000608000033260

Great! You have an SBValue instance stored at a and are already knowledgeable about

the memory layout of the DSObjectiveCObject. You know a is holding an SBValue that is

a pointer to the DSObjectiveCObject class.

You can grab the description of the DSObjectiveCObject class by using the

GetDescription(), or more simply description property of SBValue.

Type the following:

(lldb) script print a.description

You’ll see something similar to the following:

<DSObjectiveCObject: 0x608000033260>

You can also get the value property, which returns a Python String containing the

address of this instance:

(lldb) script print a.value

Just the value this time:

0x0000608000033260

Copy the output of a.value and ensure po’ing this pointer gives you the original, correct

reference:

(lldb) po 0x0000608000033260

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 330

Yup:

<DSObjectiveCObject: 0x608000033260>

If you want the address expressed in a Python number instead of a Python str, you can

use the signed or unsigned property:

(lldb) script print a.signed

Like this:

106102872289888

Formatting the number to hexadecimal will produce the pointer to this instance of

DSObjectiveCObject:

(lldb) p/x 106102872289888

And you’re back to where you were before:

(long) $3 = 0x0000608000033260

Exploring properties through SBValue offsets
What about those properties stuffed inside that DSObjectiveCObject instance? Let’s

explore those!

Use the GetNumChildren method available to SBValue to get its child count:

(lldb) script print a.GetNumChildren()
4

You can think children as just an array. There’s a special API to traverse the children in

a class called GetChildAtIndex, so you can explore children 0-3 in LLDB.

Child 0:

(lldb) script print a.GetChildAtIndex(0)
(NSObject) NSObject = {
 isa = DSObjectiveCObject
}

Child 1:

(lldb) script print a.GetChildAtIndex(1)
(UICachedDeviceRGBColor *) _eyeColor = 0x0000608000070e00

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 331

Child 2:

(lldb) script print a.GetChildAtIndex(2)
(__NSCFConstantString *) _firstName = 0x000000010db83368 @"Derek"

Child 3:

(lldb) script print a.GetChildAtIndex(3)
(__NSCFConstantString *) _lastName = 0x000000010db83388 @"Selander"

Each of these will return an SBValue in itself, so you can explore that object even further

if you desired. Take the firstName property into account. Type the following to just get

the description:

(lldb) script print a.GetChildAtIndex(2).description
Derek

It’s important to remember the Python variable a is a pointer to an object. Type the

following:

(lldb) script a.size
8

This will print out a value saying a is 8 bytes long. But you want to get to the actual

content! Fortunately, the SBValue has a deref property that returns another SBValue.

Explore the output with the size property:

(lldb) script a.deref.size

This returns the value 32 since it makes up the isa, eyeColor, firstName, and lastName,

each of them being 8 bytes long themselves as they are all pointers.

Here’s another way to look at what the deref property is doing. Explore the SBType class

(you can look that one up yourself) of the SBValue.

(lldb) script print a.type.name

You’ll get this:

DSObjectiveCObject *

Now do the same thing through the deref property:

(lldb) script print a.deref.type.name

You’ll now get the normal class:

DSObjectiveCObject

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 332

Viewing raw data through SBValue
You can even dump the raw data out with the data property in SBValue! This is

represented by a class named SBData, which is yet another class you can check out on

your own.

Print out the data of the pointer to DSObjectiveCObject:

(lldb) script print a.data

This will print out the physical bytes that make up the object. Again, this is the pointer

to DSObjectiveCObject, not the object itself.

60 32 03 00 80 60 00 00 `2...`..

Remember, each byte can be represented as two digits in hexadecimal.

Do you remember covering the little-endian formatting in Chapter 11, “Assembly &

Memory” and how the raw data is reversed?

Compare this with the value property of SBValue.

(lldb) script print a.value
0x0000608000033260

Notice how the values have been flipped. For example, the final two hex digits of my

pointer are the first grouping (aka byte) in the raw data. In my case, the raw data

contains 0x60 as the first value, while the pointer contains 0x60 as the final value.

Use the deref property to grab all the bytes that make up this DSObjectiveCObject.

(lldb) script print a.deref.data
f0 54 b8 0d 01 00 00 00 00 0e 07 00 80 60 00 00 .T...........`..
68 33 b8 0d 01 00 00 00 88 33 b8 0d 01 00 00 00 h3.......3......

This is yet another way to visualize what is happening. You were jumping 8 bytes each

time when you were spelunking in memory with that cute po *(id*)

(0x0000608000033260 + multiple_of_8) command.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 333

SBExpressionOptions
As mentioned when discussing the EvaluateExpression API, there’s an optional second

parameter that will take an instance of type SBExpressionOptions. You can use this

command to pass in specific options for the JIT execution.

In LLDB, clear the screen, start fresh and type the following:

(lldb) script options = lldb.SBExpressionOptions()

You’ll get no output upon success. Next, type:

(lldb) script options.SetLanguage(lldb.eLanguageTypeSwift)

SBExpressionOptions has a method named SetLanguage (when in doubt, use

gdocumentation SBExpressionOptions), which takes an LLDB module enum of type

lldb::LanguageType. The LLDB authors have a convention for sticking an "e" before an

enum, the enum name, then the unique value.

This sets the options to evaluate the code as Swift instead of whatever the default is,

based on the language type of SBFrame.

Now tell the options variable to interpret the JIT code as a of type ID (i.e. po, instead of

p):

(lldb) script options.SetCoerceResultToId()

SetCoerceResultToId takes an optional Boolean, which determines if it should be

interpreted as an id or not. By default, this is set to True.

To recap what you did here: you set the options to parse this expression using the

Python API instead of the options passed to us through the expression command.

For example, SBExpressionOptions you’ve declared so far is pretty much equivalent to

the following options in the expression command:

expression -lswift -O -- your_expression_here

Next, create an instance of the ASwiftClass method only using the expression

command. If this works, you’ll try out the same expression in the EvaluateExpression

command. In LLDB type the following:

(lldb) e -lswift -O -- ASwiftClass()

You’ll get an ugly little error for output...

error: <EXPR>:3:1: error: use of unresolved identifier 'ASwiftClass'

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 334

ASwiftClass()
^~~~~~~~~~~

Oh yeah, — you need to import the Allocator module to make Swift play nicely in the

debugger.

In LLDB:

(lldb) e -lswift -- import Allocator

Note: This is a problem many LLDB users complain about: LLDB can’t properly
evaluate code that should be able to execute. Adding this import logic will modify
LLDB’s Swift expression prefix, which is basically a set of header files that a
referenced right before you JIT code is evaluated.

LLDB can’t see the class ASwiftClass in the JIT code when you’re stopped in the
non-Swift debugging context. This means you need to append the headers to the
expression prefix that belongs to the Allocator module.

There’s a great explanation from one of the LLDB authors about this very problem
here: http://stackoverflow.com/questions/19339493/why-cant-lldb-evaluate-this-
expression.

Execute the previous command again. Up arrow twice then Enter:

(lldb) e -lswift -O -- ASwiftClass()

You’ll get a reference to an instance of the ASwiftClass().

Now that you know this works, use the EvaluateExpression method with the options

parameter as the second parameter this time and assign the output to the variable b,

like so:

(lldb) script b = lldb.target.EvaluateExpression('ASwiftClass()',
options)

If everything went well, you’ll get a reference to a SBValue in the b Python variable.

Note: It’s worth pointing out some properties of SBValue will not play nicely with
Swift. For example, dereferencing a Swift object with SBValue’s deref or
address_of property will not work properly. You can coerce this pointer to an
Objective-C reference by casting the pointer as a SwiftObject, and everything will
then work fine. Like I said, they make you work for it when you’re trying to go after
pointers in Swift!

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 335

Referencing variables by name with SBValue
Referencing child SBValues via GetChildAtIndex from SBValue is a rather ho-hum way

to navigate to an object in memory. What if the author of this class added a property

before eyeColor that totally screwed up your offset logic when traversing this SBValue?

Fortunately, SBValue has yet another method that lets you reference instance variables

by name instead of by offset: GetValueForExpressionPath.

Jump back to LLDB and type the following:

(lldb) script print b.GetValueForExpressionPath('.firstName')

You can keep drilling down into the child’s own struct if you wish:

How did I obtain the name of child SBValues? If you had no clue of the name for the

child SBValue, all you have to do is get to the child using the GetIndexOfChild API, then

use the name property on that SBValue child.

For example, if I didn’t know the name of the UIColor property found in the b SBValue, I

could do the following:

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 336

lldb.value
One final cool thing you can do is create a Python reference that contains the SBValue’s

properties as the Python object’s properties (wait... what?). Think of this as an object

through which you can reference variables using Python properties instead of Strings.

Back in the console, instantiate a new value object from your b SBValue:

(lldb) script c = lldb.value(b)

This will create the special LLDB Python object of type value. Now you can reference its

instance variables just like you would a normal object!

Type the following into LLDB:

(lldb) script print c.firstName

You can also cast the child object back into an SBValue so you can query it or apply it to

a for loop, like so:

(lldb) script print c.firstName.sbvalue.signed

Again, if you don’t know the name of a child SBValue, use the GetChildAtIndex API to

get the child and get its name from the name property.

Note: Although the lldb.value class is awesome, this comes at a cost. It’s rather
expensive to create and access properties through this type of class. If you are
parsing a huge NSArray (or Array<Any>, for you Swifties), using this class will
definitely slow you down. Play around with it and find the sweet spot between
speed and convenience.

Where to go from here?
Holy cow... how dense was that chapter!? Fortunately you have come full circle. You can

use the options provided by your custom command to dynamically generate your JIT

script code. From the return value of your JIT code, you can write scripts that have

custom logic based upon the return SBValue that is parsed through the

EvaluateExpression APIs.

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 337

This can unlock some amazing scripts for you. In any process to which you can attach

LLDB, you can run your own custom code and handle your own custom return values

within your Python script. There’s no need to deal with signing issues or loading of

frameworks or anything like that.

The remaining chapters in this section will focus on the composition of some creative

scripts and how they can make your debugging (or reverse engineering) life much

simpler. Theory time is over. It’s time for some fun!

Advanced Apple Debugging Chapter 21: Script Bridging with SBValue & Memory

raywenderlich.com 338

22
Chapter 22: SB Examples,
Improved Lookup

For the rest of the chapters in this section, you'll focus on Python scripts.

As alluded to in the previous chapter, the image lookup -rn command is on its way out.

Time to make a prettier script to display content.

Here’s what you get right now with the image lookup -rn command:

When you finish this chapter, you’ll have a new script named lookup which queries in a

much cleaner way.

raywenderlich.com 339

In addition, you’ll add a couple of parameters to the lookup command to add some bells

and whistles for your new searches.

Automating script creation
Included with the starter directory of this project are two Python scripts that will make

your life easier when creating LLDB script content. They are as follows:

• generate_new_script.py: This will create a new skeleton script with whatever name

you provide it and stick it into the same directory generate_new_script resides in.

• lldbinit.py: This script will enumerate all scripts (files that end with .py) located

within the same directory as itself and try to load them into LLDB. In addition, if

there are any files with a txt extension, LLDB will try to load those files’ contents

through command import.

Take both of these files found in the starter folder of this chapter and stick them into

your ~/lldb/ directory.

Once the files are in their correct locations, jump over to your ~/.lldbinit file and add

following line of code:

command script import ~/lldb/lldbinit.py

This will load the lldbinit.py file which will enumerate all .py files and .txt files found

in the same directory and load them into LLDB. This means that from here on out,

simply adding a script file into the ~/lldb directory will load it automatically once

LLDB starts.

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 340

Creating the lookup command
With your new tools properly set up, open up a Terminal window. Launch a new

instance of LLDB:

lldb

As expected, you’ll be greeted by the LLDB prompt.

Make sure there are no build errors in any of your existing LLDB scripts:

(lldb) reload_script

If your output is free of errors, it's time to try out your new command __generate_script

(implemented from the generate_new_script.py file).

In LLDB, type:

(lldb) __generate_script lookup

If everything went as expected, you’ll get output similar to the following:

Opening "/Users/derekselander/lldb/lookup.py"...

In addition, a Finder window will pop up showing you the location of the file. It’s pretty

crazy what you can do with these Python scripts, right?

Hold onto the Finder window for a second — don’t close it. Head back to the LLDB

Terminal window and apply the reload_script command.

Since the lookup.py script was created in the same directory as the lldbinit.py file and

you have just reloaded the contents of ~/.lldbinit, you’ll now have a working skeleton

of the lookup.py file. Give the command a go.

(lldb) lookup

You’ll get the following output:

Hello! the lookup command is working!

Now you can create and use custom commands in as little as two LLDB commands.

Yeah, you could do all the setup in one command, but I like having control over when

my scripts reload.

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 341

lldbinit directory structure suggestions
The way I’ve structured my own lldbinit files might be insightful to some. This is not a

required section, but more of a suggestion on how to organize all of your custom scripts

and content for LLDB.

I tend to keep my ~/.lldbinit as light as possible and use a script like lldbinit.py to

load all my contents from a particular directory. Facebook’s Chisel does the same thing

with the fblldb.py file. Check it out if you’re interested.

I keep that directory under source control in case I need to transfer logic to a different

computer, or in case I completely screw something up. For example, my actual

~/.lldbinit file (when not working on this book) only contains the following items:

command script import /Users/derekselander/lldb_repo/lldb_commands/
lldbinit.py
command script import /Users/derekselander/chisel/chisel/fblldb.py

The lldb_repo is a public git repository at https://github.com/DerekSelander/lldb which

contains some LLDB scripts designed for reverse engineering.

I also have Facebook’s Chisel on source control, so whenever those developers push a

new, interesting release, I’ll just pull the latest from my Chisel source control directory

at https://github.com/facebook/chisel and I’ll have everything I need the next time I

run LLDB, or reload my scripts through reload_script.

Inside my lldb_commands directory, I have all my Python scripts as well as two text files.

One text file is named cmds.txt and holds all my command regex’s and command alias’s.

I also have another file named settings.txt, which I use to augment any LLDB settings.

For example, the only content I have in my settings.txt file at the moment is:

settings set target.skip-prologue false
settings set target.x86-disassembly-flavor intel

You’ve already added these settings to your ~/.lldbinit file earlier in this book, but I

prefer this implementation to separate out my custom LLDB commands to my LLDB

settings so I don’t get lost when grep’ing my ~/.lldbinit file.

However, for this book, I chose to keep each chapter content independent for each

script installation. This means you’ve manually added content to your ~/.lldbinit file

so you know what’s happening. You should revisit this new structure implementation

when (if?) you finish this book, as there are several benefits to this suggested layout.

The benefits are as follows:

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 342

1. Calling reload_script only displays the commands ~/.lldbinit is loading; it will

not display the sub-scripts being loaded. For example this will echo back the

lldbinit.py being loaded, but not echo out the content lldbinit.py itself loads.

This makes it easier to create scripts because I often use reload_script as a way to

check for any error messages on the latest script I am working on. The less output

there is from executing reload_script, the less output there is to review when

checking for errors in the console.

2. As noted, having as little content as possible in ~/.lldbinit will let you easily

transfer content between computers, especially if that content is under source

control.

3. Finally, it’s much easier to add new scripts with this implementation. Just stick

them in the same directory as the lldbinit.py file and it will be loaded next time.

The alternative is to manually add the path to your script to the ~/.lldbinit file,

which can get annoying if you do this frequently.

That’s my two cents on the subject. You’ll use this implementation strategy for the

remaining scripts in this section as you only have to add scripts to your ~/lldb

directory for them to get loaded into LLDB... which is rather nice, right?

Back to the lookup command!

Implementing the lookup command
As you saw briefly in the previous chapter, the foundation behind this lookup command

is rather simple. The main “secret” is using SBTarget’s FindGlobalFunctions API. After

that, all you need to do is format the output as you like.

You’ll continue working with the Allocator Xcode project, found in the starter folder

for this chapter.

Open the project, and build and run on a iPhone X Simulator. You’ll use this project to

test out your new lookup command queries as the script progresses throughout the

chapter.

Once running, pause the application and bring up LLDB.

My memory is a little fuzzy. Which parameters does this FindGlobalFunctions specify?

Type the following into LLDB:

(lldb) script help(lldb.SBTarget.FindGlobalFunctions)

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 343

You’ll get the following output showing the method signature:

FindGlobalFunctions(self, *args) unbound lldb.SBTarget method
 FindGlobalFunctions(self, str name, uint32_t max_matches, MatchType
matchtype) -> SBSymbolContextList

Since it’s a Python class, you can ignore that first self parameter. The str parameter

named name will be your lookup query. max_matches will dictate the maximum number

of hits you want. If you specify the number 0, it will return all available matches. The

matchType parameter is a lldb Python enum on which you can perform different types of

searches, such as regex or non-regex.

Since regex searching really is the only way to go, you’ll use the LLDB enum value

lldb.eMatchTypeRegex.

The other enum values can be found here: https://lldb.llvm.org/python_reference/

_lldb%27-module.html#eMatchTypeRegex

Time to implement this in the lookup.py script. Open up ~/lldb/lookup.py in your

favorite text editor. Find the following code at the end of handle_command:

Uncomment if you are expecting at least one argument
clean_command = shlex.split(args[0])[0]
result.AppendMessage('Hello! the lookup command is working!')

Delete the above code, and replace it with the following, making sure you preserve the

indentation:

1
clean_command = shlex.split(args[0])[0]
2
target = debugger.GetSelectedTarget()

3
contextlist = target.FindGlobalFunctions(clean_command, 0,
lldb.eMatchTypeRegex)
4
result.AppendMessage(str(contextlist))

Here’s what this does:

1. Obtains a cleaned version of the command that was passed to the script, using the

same magic as you saw in Chapter 20.

2. Grabs the instance of SBTarget through SBDebugger.

3. Uses the FindGlobalFunctions API with clean_command. You’re supplying 0, for no

upper limit on number of results and giving it the eMatchTypeRegex match type to

use a regular expression search.

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 344

4. You're turning the contextlist into a Python str and then appending it to the

SBCommandReturnObject.

Back in Xcode, reload the contents through the LLDB console:

(lldb) reload_script

Give the lookup command a go. Remember that DSObjectiveCObject class you

spelunked in the previous chapter? Dump everything pertaining to that through LLDB:

lookup DSObjectiveCObject

You’ll get output that actually looks worse than image lookup -rn

DSObjectiveCObject:

Use LLDB’s script command to figure out which APIs to explore further:

(lldb) script k = lldb.target.FindGlobalFunctions('DSObjectiveCObject',
0, lldb.eMatchTypeRegex)

This will replicate what you’ve done in the lookup.py script and assign the instance of

SBSymbolContextList to the value k. I am a fan of short variables names when exploring

API names — if you haven’t noticed.

Explore the documentation of SBSymbolContextList:

(lldb) gdocumentation SBSymbolContextList

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 345

While you’re at it, dump all the all the methods implemented by SBSymbolContextList.

In LLDB:

(lldb) script dir(lldb.SBSymbolContextList)

This will dump out all the methods SBSymbolContextList implements or overrides.

There’s a lot there. But focus on the __iter__ and the __getitem__.

This is good news for your script, since this means SBSymbolContextList is iterable as

well as indexable. A second ago, you just assigned an instance of SBSymbolContextList

to a variable named k through LLDB.

In the LLDB console, use indexing to grab an item in the k object.

(lldb) script k[0]

This is equivalent to (though much more ugly) typing script k.__getitem__(0). You’ll

get something like:

<lldb.SBSymbolContext; proxy of <Swig Object of type
'lldb::SBSymbolContext *' at 0x113a83780> >

Good to know! The SBSymbolContextList holds an “array” of SBSymbolContext.

Use the print command to get the context of this SBSymbolContext:

(lldb) script print k[0]

Your output could differ, but I got the SBSymbolContext which represents -

[DSObjectiveCObject setLastName:], like so:

 Module: file = "/Users/derekselander/Library/Developer/Xcode/
DerivedData/Allocator-czsgsdzfgtmanrdjnydkbzdmhifw/Build/Products/Debug-
iphonesimulator/Allocator.app/Allocator", arch = "x86_64"
CompileUnit: id = {0x00000000}, file = "/Users/derekselander/iOS/dbg/s4-
custom-lldb-commands/22. Ex 1, Improved Lookup/projects/final/Allocator/
Allocator/DSObjectiveCObject.m", language = "objective-c"
 Function: id = {0x100000268}, name = "-[DSObjectiveCObject

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 346

setLastName:]", range = [0x0000000100001c00-0x0000000100001c37)
 FuncType: id = {0x100000268}, decl = DSObjectiveCObject.h:33,
compiler_type = "void (NSString *)"
 Symbol: id = {0x0000001e}, range =
[0x0000000100001c00-0x0000000100001c40), name="-[DSObjectiveCObject
setLastName:]"

You’ll use properties and/or getter methods from the SBSymbolContext to grab the name

of this function.

The easiest way to do this is to grab the SBSymbol from the SBSymbolContext through

the symbol property. From there the SBSymbol contains a name property, which will

return your happy Python string.

Make sure this works in your LLDB console:

(lldb) script print k[0].symbol.name

In my case, I received the following:

-[DSObjectiveCObject setLastName:]

This is enough information to work with in building out your script. You'll take the

SBSymbolContextList, iterate through the items and print out the name of the function

it finds.

Head back over to your lookup.py script and modify the contents in the

handle_command function. Find the following lines:

3
contextlist = target.FindGlobalFunctions(clean_command, 0,
lldb.eMatchTypeRegex)
4
result.AppendMessage(str(contextlist))

Replace them with the following (indenting correctly!):

contextlist = target.FindGlobalFunctions(clean_command, 0,
lldb.eMatchTypeRegex)

output = ''
for context in contextlist:
 output += context.symbol.name + '\n\n'

result.AppendMessage(output)

You're now iterating all SBSymbolContext’s within the returned SBSymbolContextList,

hunting down the name of the function and separating it by two newlines.

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 347

Jump back to Xcode, and reload your script:

(lldb) reload_script

Then give your updated lookup command a test in LLDB:

(lldb) lookup DSObjectiveCObject

You’ll get much prettier output than before:

-[DSObjectiveCObject setLastName:]

-[DSObjectiveCObject .cxx_destruct]

-[DSObjectiveCObject setFirstName:]

-[DSObjectiveCObject eyeColor]

-[DSObjectiveCObject init]

-[DSObjectiveCObject lastName]

-[DSObjectiveCObject setEyeColor:]

-[DSObjectiveCObject firstName]

This is nice and all, but I want to see where these functions reside in my process. I want

to group all functions to a particular module (an SBModule) when they're being printed

out separated by a header with the module name and number of hits for the module.

Head on back to the lookup.py file. You’ll now create two new functions.

The first function will be named generateFunctionDictionary, which will take your

SBBreakpointContextList and generate a Python Dictionary of lists. This dict will

contain keys for each module. For the value in the dict, you’ll have a Python list for each

SBSymbolContext that gets hit.

The second function will be named generateOutput, which will parse this dictionary

you’ve created along with the options you’ve received from the OptionParser instance.

This method will return a String to be printed back to the console.

Start by implementing the generateModuleDictionary function right below the

handle_command function in your lookup.py script:

def generateModuleDictionary(contextlist):
 mdict = {}
 for context in contextlist:
 # 1
 key = context.module.file.fullpath
 # 2

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 348

 if not key in mdict:
 mdict[key] = []

 # 3
 mdict[key].append(context)
 return mdict

Here’s what going on:

1. From within the SBSymbolContext, you’re grabbing the SBModule (module), then the

SBFileSpec (file), then the Python string of the fullPath and assigning it to a

variable named key. It’s important to grab the fullPath (instead of, say,

SBFileSpec’s basename property, since there could be multiple modules with the

same basename).

2. This mdict variable is going to hold a list of all symbols found, split by module. The

key in this dictionary will be the module name, and the value will be an array of

symbols found in that module. On this line, you’re checking if the dictionary already

contains a list for this module. If not, a blank list is added for this module key.

3. You’re adding the SBSymbolContext instance to the appropriate list for this module.

You can safely assume that for every key in the mdict variable, there will be at least

one or more SBSymbolContext instances.

Note: A much easier way of getting a unique key would be to just use the
__str__() method SBModule has (and pretty much every class in the LLDB Python
module). This is the function that gets called when you call Python’s print on one
of these objects. However, you wouldn’t be learning about all these classes,
properties and methods in the process if you just relied on the __str__() method.

Right below the generateModuleDictionary function, implement the generateOutput

function:

def generateOutput(mdict, options, target):
 # 1
 output = ''
 separator = '*' * 60 + '\n'
 # 2
 for key in mdict:
 # 3
 count = len(mdict[key])
 firstItem = mdict[key][0]
 # 4
 moduleName = firstItem.module.file.basename
 output += '{0}{1} hits in {2}\n{0}'.format(separator,
 count,
 moduleName)

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 349

 # 5
 for context in mdict[key]:
 query = ''
 query += context.symbol.name
 query += '\n\n'
 output += query
 return output

Here’s what this does:

1. The output variable will be the return string that contains all the content eventually

passed to your SBCommandReturnObject.

2. Enumerate all the keys found in the mdict dictionary.

3. This will grab the count for the array and the very first item in the list. You’ll use

this information to query the module name later.

4. You’re grabbing the module name to use in the header output for each section.

5. This will iterate all the SBSymbolContext items in the Python list and add the

names to the output variable.

One final tweak before you can test this out.

Augment the code in the handle_command function so it utilizes the two new

methods you’ve just created. Find the following code:

output = ''
for context in contextlist:
 output += context.symbol.name + '\n\n'

And replace it with the following:

mdict = generateModuleDictionary(contextlist)
output = generateOutput(mdict, options, target)

You know what to do. Go to Xcode; reload contents in LLDB.

(lldb) reload_script

Check out your new and improved lookup command:

(lldb) lookup DSObjectiveCObject

You’ll get something like this:

**
8 hits in Allocator
**
-[DSObjectiveCObject setLastName:]

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 350

-[DSObjectiveCObject .cxx_destruct]

-[DSObjectiveCObject setFirstName:]

-[DSObjectiveCObject eyeColor]

-[DSObjectiveCObject init]

-[DSObjectiveCObject lastName]

-[DSObjectiveCObject setEyeColor:]

-[DSObjectiveCObject firstName]

Cool. Go after all Objective-C methods that begin with initWith, and only contain two

parameters.

(lldb) lookup initWith(\w+\:){2,2}\]

You’ll get hits from both public and private modules, all loaded into the Allocator

process.

Adding options to lookup
You’ll keep the options nice and simple and implement only two options that don’t

require any extra parameters.

You’ll implement the following:

• Add load addresses to each query. This is ideal if you want to know where the actual

function is in memory.

• Provide a module summary only. Don’t produce function names, only list the count

of hits per module

The __generate_script command added some placeholders for the

generateOptionParser method found at the bottom of the lookup.py file. In the

generateOptionParser function, change the function so it contains the following code:

def generateOptionParser():
 usage = "usage: %prog [options] code_to_query"
 parser = optparse.OptionParser(usage=usage, prog="lookup")

 parser.add_option("-l", "--load_address",
 action="store_true",
 default=False,
 dest="load_address",
 help="Show the load addresses for a particular hit")

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 351

 parser.add_option("-s", "--module_summary",
 action="store_true",
 default=False,
 dest="module_summary",
 help="Only show the amount of queries in the module")
 return parser

There’s no need to take a deep dive in this code since you learned about this in a

previous chapter. You’re creating two supported options, -s, or --module_summary and -

l, or --load_address.

You’ll implement the load address option first. In the generateOutput function,

navigate to the for-loop iterating over the SBSymbolContext, which starts with the for

context in mdict[key]: line of code.

Make that for-loop look like this:

for context in mdict[key]:
 query = ''

 # 1
 if options.load_address:
 # 2
 start = context.symbol.addr.GetLoadAddress(target)
 end = context.symbol.end_addr.GetLoadAddress(target)
 # 3
 startHex = '0x' + format(start, '012x')
 endHex = '0x' + format(end, '012x')
 query += '[{}-{}]\n'.format(startHex, endHex)

 query += context.symbol.name
 query += '\n\n'
 output += query

Here’s what that does:

1. You’re adding the conditional to see if the load_address option is set. If so, this will

add content to the output.

2. This traverses the SBSymbolContext to the SBSymbol (symbol property) to the

SBAddress (addr or end_addr) and gets a Python long through the GetLoadAddress

method.

There’s actually a load_addr available to SBAddress, but I’ve found it to be a bit buggy at

times, so I’ve defaulted to using the GetLoadAddress API instead. This method expects

the SBTarget as an input parameter.

3. After you have the start and end addresses expressed in Python long’s, you are

formatting them to look pretty and consistent using the Python format function.

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 352

This pads the number with zeros if needed, notes it should be 12 digits long, and

formats it in hexadecimal.

Save your work and revisit Xcode and the LLDB console. Reload.

(lldb) reload_script

Give your new option a go:

(lldb) lookup -l DSObjectiveCObject

You’ll get output similar to the truncated output:

**
8 hits in Allocator
**
[0x0001099d2c00-0x0001099d2c40]
-[DSObjectiveCObject setLastName:]

[0x0001099d2c40-0x0001099d2cae]
-[DSObjectiveCObject .cxx_destruct]

Put a breakpoint at an address from this list to see if it matches with the function. Do it

like so, replacing the address with one from your list:

(lldb) b 0x0001099d2c00
Breakpoint 3: where = Allocator`-[DSObjectiveCObject setLastName:] at
DSObjectiveCObject.h:33, address = 0x00000001099d2c00

Great job! One more option to implement and then you’re done!

Revisit the generateOutput function for the final time. Find the following line:

moduleName = firstItem.module.file.basename

Add the following code right after that line:

if options.module_summary:
 output += '{} hits in {}\n'.format(count, moduleName)
 continue

This simply adds the number of hits in each module and skips adding the actual

symbols.

That’s it. No more code. Save, then head back to Xcode to reload your script:

(lldb) reload_script

Give your module_summary option a go:

(lldb) lookup -s viewWillAppear

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 353

You’ll get something similar to this:

46 hits in UIKit
1 hits in WebKit
4 hits in Allocator

That’s it! You’re done! You’ve made a pretty powerful script from scratch. You’ll use this

script to search for code in future chapters. The summary option is a great tool to have

when you’re casting a wide search and then want to narrow it down further.

Where to go from here?
There are many more options you could add to this lookup command. You could make a

-S or -Swift_only query by going after SBSymbolContext’s SBFunction (through the

function property) to access the GetLanguage() API.

While you’re at it, you should also add a -m or --module option to filter content to a

certain module.

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 354

If you want to see what else is possible, check out my implementation of lookup here:

https://github.com/DerekSelander/LLDB/blob/master/lldb_commands/lookup.py.

Enjoy adding those options!

Advanced Apple Debugging Chapter 22: SB Examples, Improved Lookup

raywenderlich.com 355

23
Chapter 23: SB Examples,
Resymbolicating a Stripped
ObjC Binary

This will be a novel example of what you can do with some knowledge of the Objective-

C runtime mixed in with knowledge of the lldb Python module.

When LLDB comes up against a stripped executable (an executable devoid of DWARF

debugging information), LLDB won’t have the symbol information to give you the stack

trace.

Instead, LLDB will generate a synthetic name for a method it recognizes as a method,

but doesn’t know what to call it.

Here’s an example of a synthetic method created by LLDB on an always fun to explore

process...

___lldb_unnamed_symbol906$$SpringBoard

One strategy to reverse engineer the name of this method is to create a breakpoint on it

and explore the registers right at the start of the method.

Using your assembly knowledge of the Objective-C runtime, you know the RSI register

(x64) or the X1 register (ARM64) will contain the Objective-C Selector that holds the

name of method. In addition, you also have the RDI (x64) or X0 (ARM64) register which

holds the reference to the instance (or class).

However, as soon as you leave the function prologue, you have no guarantee that either

of these registers will contain the values of interest, as they will likely be overwritten.

What if a stripped method of interest calls another function? The registers you care

about are now lost, as they’re set for the parameters for this new function. You need a

way to resymbolicate a stack trace without having to rely upon these registers.

raywenderlich.com 356

In this chapter, you’ll build an LLDB script that will resymbolicate stripped Objective-C

functions in a stack trace.

When you called bt for this process, LLDB didn’t have the function names for the

highlighted methods.

You will build a new command named sbt that will look for stripped functions and try

to resymbolicate them using the Objective-C runtime. By the end of the chapter, your

sbt command will produce this:

Those once stripped-out Objective-C function calls are now resymbolicated.

As with any of these scripts, you can run this new sbt script on any Objective-C

executable provided LLDB can attach to it.

So how are you doing this, exactly?
Let’s first discuss how one can go about resymbolicating Objective-C code in a stripped

binary with the Objective-C runtime.

The Objective-C runtime can list all classes from a particular image (an image being the

main executable, a dynamic library, an NSBundle, etc.) provided you have the full path to

the image. This can be accomplished through the objc_copyClassNamesForImage API.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 357

From there, you can get a list of all classes returned by objc_copyClassNamesForImage

where you can dump all class and instance methods for a particular class using the

class_copyMethodList API.

Therefore, you can grab all the method addresses and compare them to the addresses of

the stack trace. If the stack trace’s function can’t generate a default function name

(such as if the SBSymbol is synthetically generated by LLDB), then you can assume LLDB

has no debug info for this address.

Using the lldb Python module, you can get the starting address for a particular function

— even when a function’s execution is partially complete. This is accomplished using

SBValue’s reference to an SBAddress. From there, you can compare the addresses of all

the Objective-C methods you’ve obtained to the starting address of the synthetic

SBSymbol. If two addresses match, then you can swap out the stripped (synthetic)

method name and replace it with the function name that was obtained with the

Objective-C runtime.

Don’t worry: You’ll explore this systematically using LLDB’s script command before

you go building this Python script.

50 Shades of Ray
Included in the starter directory is an application called 50 Shades of Ray. A well-

chosen name (in my humble opinion) for a project that showcases the many faces of

Ray Wenderlich.

There’s gentle Ray, there’s superhero Ray, there’s confused Ray, there's even goat BFF

Ray!

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 358

When tapping the UIButton at the bottom, a randomly generated picture of Ray pops up

in a UIView of random size.

Wow, that will make billions on the App Store!

Open the 50 Shades of Ray project and build and run the app. In the Xcode project,

there are two schemes. Make sure you select the 50 Shades of Ray scheme and not the

Stripped scheme. You’ll use that scheme later.

Once you’ve gotten your enjoyment out of generating random pictures of Ray, click on

the ObjC UIBarButtonItem in the upper right hand corner.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 359

This UIBarButtonItem is tied to an IBAction that will print out all the methods

implemented by the main executable and displays them to stderr in your console. In

fact, you can see the name of the method that triggered the console output within the

console output!

Scan the console for the method -[ViewController dumpObjCMethodsTapped:]. It’s

this method which dumped all the Objective-C methods in the main executable.

Preceding the function is a number (in my case, 4449531728), which holds the starting

address for this Objective-C method.

Don’t believe me? Pause execution and type the following into LLDB:

(lldb) image lookup -a 4449531728

You address will be different. This is hunting down the location of the address

4483016672 in memory and seeing where it relates in reference to your project.

Address: 50 Shades of Ray[0x00000001000017e0] (50 Shades of
Ray.__TEXT.__text + 624)
Summary: 50 Shades of Ray`-[ViewController dumpObjCMethodsTapped:] at
ViewController.m:36

Groovy. This is telling us the location in memory 4449531728 is what was loaded from -

[ViewController dumpObjCMethodsTapped:]. Let’s look at the code in this method.

Head on in to ViewController.m and hunt for the dumpObjCMethodsTapped:

The exact details don’t need to be covered too closely, but it’s worth pointing out the

following:

• All the Objective-C classes implemented in the main executable are enumerated

through objc_copyClassNamesForImage.

• For each class, there’s logic to grab all the class and instance methods.

• In order to grab the class methods for a particular Objective-C Class, you must get
the meta class. No, that term was not made up by some hipster developer in tight

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 360

jeans, plaid shirt & beard. The meta class is the class responsible for the static
methods of a particular class. For example, all methods that begin with + are
implemented by the meta Class and not the Class.

• All the methods are aggregated into a NSMutableDictionary, where the key for each

of these methods is the location in memory where the function resides.

Using script to guide your way
Time to use the script LLDB command to explore the lldb module APIs and build a

quick POC to see how you’re going to tackle finding the starting address of a function in

memory.

In the LLDB console, set a breakpoint on NSLog:

(lldb) b NSLog

You’ll get multiple SBBreakpointLocation hits. That’s fine. Now continue running the

application.

Tap on the ObjC UIBarButtonItem in the upper right corner of the Simulator.

Execution will stop right before content is spat out to stderr.

Using the global variable lldb.frame, dig into what APIs are available to you to grab the

starting address of the NSLog function.

Start with the global variable and build from there.

(lldb) script print lldb.frame

You’ll get the __str__() representation of the SBFrame. Nothing new.

frame #0: 0x000000010b472390 Foundation`NSLog

If you decided to use gdocumentation to search documentation for SBFrame (from

Chapter 19, “Script Bridging Classes and Hierarchy”, you’ll see SBFrame has a few

potential candidates for getting the start address of a function. pc looks interesting to

grab the RIP regster (x64) or the PC (ARM64), but that will only work at the start of a

function. You need to grab the starting address from any offset inside the SBFrame.

Unfortunately, there are no APIs you can use in the SBFrame to get the starting address

from any instruction offset within the function. You’ll need to turn your attention to

other classes referenced by the SBFrame to get what you need.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 361

Grab the SBSymbol reference for the SBFrame:

(lldb) script print lldb.frame.symbol

The SBSymbol is responsible for the implementation offset address of NSLog. That is, the

SBSymbol will tell you where this function is implemented in a module; it doesn’t hold

the actual address of where the NSLog was loaded into memory.

However, you can use the SBAddress property along with the GetLoadAddress API of

SBAddress to find where the start location of NSLog is in your current process.

(lldb) script print lldb.frame.symbol.addr.GetLoadAddress(lldb.target)

You’ll get a number in decimal. I got 4484178832. Convert it to hex using LLDB and

compare the output to the start address of NSLog:

(lldb) p/x 4484178832

I got 0x000000010b472390 as my hexadecimal representation.

Compare your output with the starting address of NSLog to see if they match.

Woot! A match! That’s your path to resymbolication redemption.

lldb.value with NSDictionary
Since you’re already here, you can explore one more thing. How are you going to parse

this NSDictionary with all these addresses?

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 362

You'll copy the code, almost verbatim, that generates all the methods and apply it to an
EvaluateExpression API to get an SBValue.

You should still be paused at the beginning of NSLog. Jump to the calling frame, -

[ViewController dumpObjCMethodsTapped:].

(lldb) f 1

This will get to the previous frame, dumpObjCMethodsTapped:. You now have access to all

variables within this method, including the retdict that’s responsible for dumping out

all the methods implemented within the main executable.

Grab the SBValue interpretation of the retdict reference.

(lldb) script print lldb.frame.FindVariable('retdict')

This will print the SBValue for retdict:

(__NSDictionaryM *) retdict = 0x000060800024ce10 10 key/value pairs

Since this an NSDictionary, you actually want to dereference this value so you can

enumerate it.

(lldb) script print lldb.frame.FindVariable('retdict').deref

You’ll get some more relevant output (which is truncated):

(__NSDictionaryM) *retdict = {
 [0] = {
 key = 0x000060800002bb80 @"4411948768"
 value = 0x000060800024c660 @"-[AppDelegate window]"
 }
 [1] = {
 key = 0x000060800002c1e0 @"4411948592"
 value = 0x000060800024dd10 @"-[ViewController toolBar]"
 }
 [2] = {
 key = 0x000060800002bc00 @"4411948800"
 value = 0x000060800024c7e0 @"-[AppDelegate setWindow:]"
 }
 [3] = {
 key = 0x000060800002bba0 @"4411948864"
 value = 0x000060800004afe0 @"-[AppDelegate .cxx_destruct]"
 }

It’s this you want to start with, since this prints out all the values for the keys.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 363

Make a lldb.value out of this SBValue and assign it to a variable a.

(lldb) script a = lldb.value(lldb.frame.FindVariable('retdict').deref)

This is one of those times where I would prefer to work with an lldb.value over an

SBValue. From here, you can easily explore the values within this NSDictionary.

Print the first value within this lldb.value NSDictionary.

(lldb) script print a[0]

From there, you can have either the key or value that you can print out.

Print out the key first:

(lldb) script print a[0].key

You’ll get something similar to the following:

(__NSCFString *) key = 0x000060800002bb80 @"4411948768"

Print the value:

(lldb) script print a[0].value

This will print something similar to the following:

(__NSCFString *) value = 0x000060800024c660 @"-[AppDelegate window]"

If you only want the return value without the referencing address, you’ll need to cast

this lldb.value back into a SBValue then grab the description.

(lldb) script print a[0].value.sbvalue.description

This will get you the desired -[AppDelegate window] for output. Note you may have a

different method.

If you wanted to dump all keys in this lldb.value a instance, you can use Python List

comprehensions to dump all the keys out.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 364

(lldb) script print '\n'.join([x.key.sbvalue.description for x in a])

You’ll get output similar to the following:

4411948768
4411948592
4411948800
4411948864
4411948656
4411948720
4411949072
4411946944
4411946352
4411946976

Same approach for values:

(lldb) script print '\n'.join([x.value.sbvalue.description for x in a])

You now know how to parse this NSDictionary if, hypothetically, it were to be placed in

some JIT code...

The plan is to copy the code from the dumpObjCMethodsTapped: into the Python script,

and have it execute as JIT code. From there, you’ll use the same procedure to parse it

out from the NSDictionary.

Sounds good? Get your gameplan ready and head on in to the next section!

The "stripped" 50 Shades of Ray
Yeah, that title got your attention, didn’t it?

Within the Xcode schemes of the 50 Shades of Ray executable, there is a scheme named

Stripped 50 Shades of Ray.

Stop the execution of the current process (⌘ + .) and select the Stripped 50 Shades of

Ray Xcode scheme.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 365

This scheme will build a debug executable, but remove the debugging information that

you have become accustomed to in your day-to-day development cycles.

Build and run the executable. Included within this project is a shared symbolic

breakpoint. Enable this breakpoint.

There’s no need to modify this symbolic breakpoint, but it’s worth noting what this

breakpoint will do.

This breakpoint will stop on -[UIView initWithFrame:] and has a condition to only

stop if the UIView is of type RayView, a subclass of UIView. This RayView is responsible

for displaying the lovely images of Ray Wenderlich within the application.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 366

Tap the Generate a Ray! button. Execution will stop on -[UIView initWithFrame:]

method.

Take a look at the stack trace.

There’s something interesting about stack frame 1 & 3: There’s no debug information

in there. LLDB has defaulted to generating a synthetic function name for those

methods.

Confirm this in LLDB.

In LLDB, make sure you are in the starting frame (initWithFrame:):

(lldb) f 0

Use script to see if it’s synthetic or not:

(lldb) script lldb.frame.symbol.synthetic

You’ll get False. Makes sense, because you know this is initWithFrame:. Jump to one of

the synthetic frames:

(lldb) f 1

Execute the previous script logic:

(lldb) script lldb.frame.symbol.synthetic

You’ll get True this time.

This is enough research to get you going with the Python script.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 367

Building sbt.py
Included within the starter folder is a Python script named sbt.py.

Stick this script into your ~/lldb directory. Provided you’ve installed the lldbinit.py

script, this will load all the Python files into the LLDB directory.

If you didn’t follow along in Chapter 22, “SB Examples, Improved Lookup”, you can

manually install the sbt.py by modifying your ~/.lldbinit file.

Once you’ve placed the sbt.py file into the ~/lldb directory, reload your commands in

~/.lldbinit using the reload_script you created in Chapter 19, “Script Bridging Classes

and Hierarchy”.

Check and see if LLDB correctly recognizes the sbt command:

(lldb) help sbt

You’ll get some help text if LLDB recognizes the command. This will be the starting

point for the sbt command.

Open this file up and jump down to generateExecutableMethodsScript. There’s

something interesting here that’s worth pointing out.

Do you remember in the previous chapter, how I mentioned lldb.value is

slooooooooooooooooow? If you're exploring a huge executable with lots of methods,

the amount of time it takes for Python to go through every value in an NSDictionary

takes forever.

Instead, you don’t need to grab every reference to every single function in your

NSDictionary. You only need to grab the locations of the start of each function in the

stack trace.

def generateExecutableMethodsScript(frame_addresses):
 frame_addr_str = 'NSArray *ar = @['
 for f in frame_addresses:
 frame_addr_str += '@"' + str(f) + '",'

 frame_addr_str = frame_addr_str[:-1]
 frame_addr_str += '];'

 # #############################
 # Truncated content...
 # #############################

 command_script += frame_addr_str
 command_script += r'''
 NSMutableDictionary *stackDict = [NSMutableDictionary dictionary];

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 368

 [retdict keysOfEntriesPassingTest:^BOOL(id key, id obj, BOOL *stop) {
 if ([ar containsObject:key]) {
 [stackDict setObject:obj forKey:key];
 return YES;
 }
 return NO;
 }];
 stackDict;
 '''
 return command_script

This is a pretty sweet optimization, because instead of evaluating potentially thousands

(if not tens of thousands) of Objective-C methods, you’ll only need to evaluate less than

20 keys or so in an NSDictionary, or whatever amount of synthetic functions are in the

stack frame.

With the symbolic breakpoint still active and program stopped, give the script a run.

Just a normal stack frame will be printed out that doesn’t have logic to resymbolicate

the symbols.

It’s time to make a few modifications to fix that.

Implementing the code
The JIT code is already set up. All you need to do is just call it, then compare the return

NSDictionary against any synthetic SBValues.

Inside processStackTraceStringFromAddresses, search for the following comments:

 # New content start 1
 # New content end 1

Stick your new code here to call the JIT code to generate a list of potential methods in a

NSDictionary:

 # New content start 1
 methods = target.EvaluateExpression(script, generateOptions())
 methodsVal = lldb.value(methods.deref)
 # New content end 1

You’ve called the code that returns the NSDictionary representation and assigned it to

the SBValue instance variable methods.

You can cast the SBValue into a lldb.value (technically it’s just a value, but you might

get confused if I don’t have the module in there) and assign it to the variable

methodsVal.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 369

Now for the final part of Python code. All you need to do is determine if a SBFrame’s
SBSymbol is synthetic or not and perform the appropriate logic.

Search the following commented out code further down in

processStackTraceStringFromAddresses:

 # New content start 2
 name = symbol.name
 # New content end 2

Change this to look like the following:

 # New content start 2
 if symbol.synthetic: # 1
 children = methodsVal.sbvalue.GetNumChildren() # 2
 name = symbol.name + r' ... unresolved womp womp' # 3

 loadAddr = symbol.addr.GetLoadAddress(target) # 4

 for i in range(children):
 key = long(methodsVal[i].key.sbvalue.description) # 5
 if key == loadAddr:
 name = methodsVal[i].value.sbvalue.description # 6
 break
 else:
 name = symbol.name # 7

 # New content end 2

 offset_str = ''

Breaking this down, you have the following:

1. You're enumerating the frames, which occur outside the scope of this code block.

For each symbol, a check is performed to see if the symbol is synthetic or not. If it

is, the memory address will be compared to the NSDictionary of addresses that were

gathered.

2. This will grab the number of children in the lldb.value that will be enumerated to

see if there’s a match from the Objective-C list of classes.

3. Either way, a valid reference to the name variable needs to be produced for the

display of the stack trace. You're opting to say you know this is a synthetic function,

but fail to resolve it if your upcoming logic fails to produce a result.

4. This gets the address in memory to the synthetic function in question.

5. The key value given by the lldb.value is internally made up from a NSNumber, so

you need to grab the description of this method and cast it into a number.

Confusingly, it’s assigned to a Python variable named key as well.

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 370

6. If the key variable is equal to the loadAddr, then you have a match. Assign the name

variable to the description of the variable in the NSDictionary.

That should be it. Save your work and reload your LLDB contents using reload_script

and give it a go.

Provided you are still in the Stripped 50 Shades of Ray scheme and are paused in the

symbolic breakpoint that stops only in UIView’s initWithFrame: (with the special

condition), run the sbt command in the debugger to see if the originally unavailable

frames 1 & 3 can be read.

frame #0: 0x1053fe694 UIKit`-[UIView initWithFrame:]
frame #1: 0x103cf53ac ShadesOfRay`-[RayView initWithFrame:] + 924
frame #2: 0x1053fdda2 UIKit`-[UIView init] + 62
frame #3: 0x103cf45bf ShadesOfRay`-[ViewController
generateRayViewTapped:] + 79

Beautiful.

Where to go from here?
Congratulations! You’ve used the Objective-C runtime to successful resymbolicate a

stripped binary! It’s crazy what you can do with the proper application of Objective-C.

There are still a few holes in this script. This script doesn’t play nice with Objective-C

blocks. However, a careful study of how blocks are implemented as well as exploring the

lldb Python module might reveal a way to indicate Objective-C block functions that

have been stripped away.

In addition, this script will not work with an iOS executable in release mode. LLDB will

not find the functions for a synthetic SBSymbol to reference the start address. This

means that you would have to manually search upwards in the ARM64 assembly until

you stumbled across an assembly instruction that looked like the start of a function

(can you guess which instruction(s) to look for?).

If those script extensions don’t interest you, try your luck with figuring out how to

resymbolicate a Swift executable. The challenge definitely goes up by an order of

magnitude, but it’s still within the realm of possibility to do with LLDB.

Have fun!

Advanced Apple Debugging Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary

raywenderlich.com 371

24
Chapter 24: SB Examples,
Malloc Logging

For the final chapter in this section, you’ll go through the same steps I myself took to

understand how the MallocStackLogging environment variable is used to get the stack

trace when an object is created.

From there, you’ll create a custom LLDB command which gives you the stack trace of

when an object was allocated or deallocated in memory — even after the stack trace is

long gone from the debugger.

Knowing the stack trace of where an object was created in your program is not only

useful for reverse engineering, but also has great use cases in your typical day-to-day

debugging. When a process crashes, it’s incredibly helpful to know the history of that

memory and any allocation or deallocation events that occurred before your process

went off the deep end.

This is another example of a script using stack-related logic, but this chapter will focus

on the complete cycle of how to explore, learn, then implement a rather powerful

custom command.

raywenderlich.com 372

Setting up the scripts
You have a couple of scripts to use (and implement!) for this chapter. Let’s go through

each one of them and how you’ll use them:

• msl.py: This is the command (which is an abbreviation for MallocStackLogging) is

the script you’ll be working on in this chapter. This has a basic skeleton of the logic.

• lookup.py: Wait — you already made this command, right? Yes, but I’ll give you my

own version of the lookup command that adds a couple of additional options at the

price of uglier code. You’ll use one of the options to filter your searches to specific

modules within a process.

• sbt.py: This command will take a backtrace with unsymbolicated symbols, and

symbolicate it. You made this in the previous chapter, and you’ll need it at the very

end of this chapter. And in case you didn’t work through the previous chapter, it’s

included in this chapter’s resources for you to install.

• search.py: This command will enumerate all objects in the heap and search for a

particular subclass. This is a very convenient command for quickly grabbing

references to instances of a particular class.

Note: These scripts come from https://github.com/DerekSelander/lldb. If I need a
tool that I don’t have, I’ll build it, and stick it in the above repo. Check it out for
some other novel ideas for LLDB scripts. It's important to note that a lot of scripts
in the above repo have dependencies on other files included in the repo, so if you
only download one script, it might not compile until the full set of files is
included.

Now for the usual setup. Take all the Python files found in the starter directory for this

chapter and copy them into your ~/lldb directory. I am assuming you have the

lldbinit.py file already set up, found in Chapter 22, “SB Examples, Improved Lookup.”

Launch an LLDB session in Terminal and go through all the help commands to make

sure each script has loaded successfully:

(lldb) help msl
(lldb) help lookup
(lldb) help sbt
(lldb) help search

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 373

MallocStackLogging explained
In case you’re unfamiliar with the MallocStackLogging environment variable, I’ll

describe it and show how it’s typically used.

When the MallocStackLogging environment variable is passed into a process, and is set

to true, it’ll monitor allocations and deallocations of memory on the heap. Pretty neat!

Included within the starter directory is the 50 Shades of Ray Xcode project with some

additional logic for this chapter. Open the project.

Before you run it, you’ll need to modify the scheme for your purposes. Select the 50

Shades of Ray scheme (make sure there’s no “Stripped” in the name), then press ⌘ +

Shift + < to edit the scheme.

Select Run, then Diagnostics, then select Malloc Stack, then All Allocation and Free

History.

Once you’ve enabled this environment variable, build the 50 Shades of Ray program

and run it on the iPhone 8 Simulator.

If the MallocStackLogging environment variable is enabled, you’ll see some output

from the LLDB console similar to the following:

ShadesOfRay(12911,0x104e663c0) malloc: stack logs being written into /
tmp/stack-logs.12911.10d42a000.ShadesOfRay.gjehFY.index

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 374

ShadesOfRay(12911,0x104e663c0) malloc: recording malloc and VM allocation
stacks to disk using standard recorder

ShadesOfRay(12911,0x104e663c0) malloc: process 12673 no longer exists,
stack logs deleted from /tmp/stack-logs.
12673.11b51d000.ShadesOfRay.GVo3li.index

Don’t worry about the details of the output; simply look for the presence of output like

this as it indicates the MallocStackLogging is working properly.

While the app is running, click the Generate a Ray button at the bottom.

Once a new Ray is created (that is, you see an instance of Ray Wenderlich’s amazingly

innovative & handsome face pop up in the Simulator), perform the following steps:

1. Select the Debug Memory Graph located at the top of the LLDB console in Xcode.

2. Select the Show the Debug navigator in the left panel.

3. At the bottom of the left panel select the Show only content from workspace.

4. Select the reference to the RayView.

5. In the right panel of Xcode, make sure the Show the Memory Inspector is selected.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 375

Once you’ve jumped through all those hoops, you’ll have the exact stack trace of where

this RayView instance was created through the Backtrace section in Xcode. How cool is

that?! The authors of Xcode (and its many modules) have made our lives a bit easier

with these memory debugging features!

Plan of attack
You know it’s possible to grab a stack trace for an instantiated object, but you’re going

to do one better than Apple.

Your command will be able to turn on the MallocStackLogging functionality at will

through LLDB, which means you won’t have to rely on an environment variable. This

has the additional benefit that you won’t need to restart your process in case you forget

to turn it on during a debug session.

So how are you going to figure out how this MallocStackLogging feature works?

When I am absolutely clueless as to where to begin when exploring built-in code, I

follow the rather loose process below and alter queries, depending on the scenario or

the output:

• I look for chokepoints where I can safely assume some logic of interest will be

executed in a process I am attached to. If I know I can replicate something of

interest, I’ll force that action to occur while monitoring it.

• When monitoring the code of interest, I’ll use various tools like LLDB or DTrace

(which you’ll learn about in the next chapter) to find the module which holds the

code of interest. Again, the module is a dynamic library, framework, NSBundle, or

something of that sort.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 376

• Once I find the module of interest, I’ll dump all the code within the module, then

filter for what I need using various custom scripts like lookup.py.

• If I find a particular function that looks relevant to my interests, I’ll first try Googling

it. I’ll often find some incredibly useful hints on https://opensource.apple.com/ that

reveals how I can use what I’ve found.

• Searching through Apple’s opensource URLs, I’ll grab as much context as I can about

the code of interest. Sometimes there’s code in the C/C++ source file that will give me

an idea of how to formulate the parameters into the function, or perhaps I’ll get a

description of the code or its purpose in the header file.

• If there’s no documentation to be gained from Googling, I’ll set breakpoints on the

code of interest and see if I can trigger that function naturally. Once hit, I’ll explore

both the stack frames and registers to see what kind of parameters are being passed

in, as well as the context it’s used in.

You’re going to follow the exact same steps to see where the code for

MallocStackLogging resides, explore the module responsible for handling stack tracing

logic, then explore any interesting code of interest within that module.

Let’s get cracking!

Hunting in getenv
MallocStackLogging is an environment variable passed into the process. This means the

C getenv function is likely used to check if this argument is supplied, and perform

additional logic if it is.

You need to dump all the items queried with getenv when the process starts up. You’ll

perform the same action you did in Chapter 15, “Hooking & Executing Code with

dlopen & dlsym” by creating a symbolic breakpoint to dump the char* parameter when

getenv is being called.

In Xcode, create a symbolic breakpoint with the following logic:

• Symbol: getenv

• Action: po (char *)$arg1

• Automatically continue after evaluating actions: yep!

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 377

Build and run the program with the MallocStackLogging variable still checked.

From the output, you can see that somewhere in the startup process, there’s code that

checks for the presence of MallocStackLogging.

Modify your symbolic breakpoint to only dump the stack trace when the program is

checking for the MallocStackLogging environment variable:

• Symbol: getenv

• Condition: ((int)strcmp("MallocStackLogging", $arg1) == 0)

• Action: bt

• Automatically continue after evaluating actions: ¡Sí!

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 378

Once your augmented symbolic breakpoint is set up, rerun the app.

You’ll get a couple of stack traces in the console. Check out the very first one:

 * frame #0: 0x0000000112b4da26 libsystem_c.dylib`getenv
 frame #1: 0x0000000112c7dd53
libsystem_malloc.dylib`_malloc_initialize + 466
 frame #2: 0x0000000112ddcac1 libsystem_platform.dylib`_os_once + 36
 frame #3: 0x0000000112c7d849
libsystem_malloc.dylib`default_zone_malloc + 77
 frame #4: 0x0000000112c7d259
libsystem_malloc.dylib`malloc_zone_malloc + 103
 frame #5: 0x0000000112c7f44a libsystem_malloc.dylib`malloc + 24
 frame #6: 0x0000000112aa2947 libdyld.dylib`tlv_load_notification +
286
 frame #7: 0x000000010e0f68a9 dyld_sim`dyld::registerAddCallback(void
(*)(mach_header const*, long)) + 134
 frame #8: 0x0000000112aa1a0d
libdyld.dylib`_dyld_register_func_for_add_image + 61
 frame #9: 0x0000000112aa1be7 libdyld.dylib`_dyld_initializer + 47

Interesting... Check out stack frame 1:

frame #1: 0x0000000112c7dd53 libsystem_malloc.dylib`_malloc_initialize +
466

If I were an Apple author, I would likely be checking for an environment variable to

conditionally see if my code should run right when it’s initialized. This looks like it’s

doing the same, plus the module name, libsystem_malloc.dylib fits the bill for

something implementing malloc stack logging related logic. Is this it? Maybe. Worth

checking out? Totally!

Take a deeper dive into this module and see what it has to offer you.

Using the fancy, new & improved lookup command, explore all the methods

implemented by the libsystem_malloc.dylib module that you can execute within your

process.

Pause the app in the debugger, and then type the following in your LLDB console:

(lldb) lookup . -m libsystem_malloc.dylib

In iOS 11.1, I get 313 hits. I could gloss through all these methods, but I am getting

increasingly lazy as a debugger person. Let’s just hunt for everything that pertains to

the word "log" (for logging) and see what we get. Type the following in LLDB:

(lldb) lookup (?i)log -m libsystem_malloc.dylib

I get 48 hits from using a case insensitive search for the word log inside the

libsystem_malloc.dylib module.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 379

This hit count is bearable enough to weed through.

Do any of those functions look interesting? Hell yeah! Here are some of the following

functions that look interesting to me:

create_log_file

open_log_file_from_directory

__mach_stack_logging_get_frames

turn_off_stack_logging

turn_on_stack_logging

Of my top 5, the turn_on_stack_logging and the __mach_stack_logging_get_frames

look like they’re worth checking out.

You’ve found the module of interest, as well as some functions worth further

exploration. Time to jump over to Google and see what’s out there.

Googling JIT function candidates
Google for any code pertaining to turn_on_stack_logging. Take a look at this search

query:

At the time I wrote this, I got three hits from Google (well, it was actually eight hits

with "exclude similar searches" off, but that’s not the point).

These functions are not well-known and are not typically discussed in any circle outside

of Apple. In fact, I am rather confident the majority of iOS application developers in

Apple don’t know about them either, because when would they use them for writing

apps?

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 380

This stuff belongs to the low-level C developers of Apple, whom we totally take for

granted.

From the Google search, check out the following code from the header file found at

https://opensource.apple.com/source/libmalloc/libmalloc-116/private/

stack_logging.h.auto.html:

typedef enum {
 stack_logging_mode_none = 0,
 stack_logging_mode_all,
 stack_logging_mode_malloc,
 stack_logging_mode_vm,
 stack_logging_mode_lite
} stack_logging_mode_type;

extern boolean_t turn_on_stack_logging(stack_logging_mode_type mode);

This is some really good information to work with. The turn_on_stack_logging

function expects one parameter of type int (C enum). The enum

stack_logging_mode_type tells you if you want the stack_logging_mode_all option, it

will be at value 1.

You’ll run an experiment by turning off the stack logging environment variable, execute

the above function via LLDB, and see if Xcode is recording stack traces for any malloc’d

object after you’ve called turn_on_stack_logging.

Before you do that, you’ll first explore the other function,

__mach_stack_logging_get_frames.

Exploring __mach_stack_logging_get_frames
Fortunately, for your exploration efforts, __mach_stack_logging_get_frames can also be

found in the same header file. This function signature looks like the following:

extern kern_return_t __mach_stack_logging_get_frames(
 task_t task,
 mach_vm_address_t address,
 mach_vm_address_t *stack_frames_buffer,
 uint32_t max_stack_frames,
 uint32_t *count);
 /* Gets the last allocation record (malloc, realloc, or free) about
address */

This is a good starting point, but what if there are parameters you’re not 100% sure how

to obtain? For example, what’s task_t task all about? This is basically a parameter

which specifies the process you want this function to act on. But what if you didn’t

know that?

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 381

Using Google and searching for any implementation files that contain
__mach_stack_logging_get_frames can be a big help when you’re uncertain about
things like this.

After a casual Googling, the https://llvm.org/svn/llvm-project/lldb/trunk/examples/

darwin/heap_find/heap/heap_find.cpp URL provides insight to the first parameter that’s

expected within this function.

This file contains the following code:

task_t task = mach_task_self();
/* Omitted code.... */
 stack_entry->address = addr;
 stack_entry->type_flags = stack_logging_type_alloc;
 stack_entry->argument = 0;
 stack_entry->num_frames = 0;
 stack_entry->frames[0] = 0;

 err = __mach_stack_logging_get_frames(task,
 (mach_vm_address_t)addr,
 stack_entry->frames,
 MAX_FRAMES,
 &stack_entry->num_frames);

 if (err == 0 && stack_entry->num_frames > 0) {
 // Terminate the frames with zero if there is room
 if (stack_entry->num_frames < MAX_FRAMES)
 stack_entry->frames[stack_entry->num_frames] = 0;
 } else {
 g_malloc_stack_history.clear();
 }
 }
}

The task_t parameter has a easy way to get the task representing the current process

through the mach_task_self function located in libsystem_kernel.dylib. You can

confirm this yourself with the lookup LLDB command.

Testing the functions
To prevent you from getting bored to tears, I’ve already implemented the logic for the

__mach_stack_logging_get_frames inside the app.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 382

Hopefully, you still have the application running. If not, get the app running with

MallocStackLogging still enabled.

It’s always a good idea to build your proof-of-concept JIT code in Xcode first, and once

it’s working, then (and only then!) transfer it to your LLDB script. You’re gonna hate

your life if you try to write your POC JIT script code straight in LLDB first. Trust me.

In Xcode, navigate to the stack_logger.cpp file. __mach_stack_logging_get_frames was

written in C++, so you’ll need to use C++ code to execute it.

The only function in this file is trace_address:

void trace_address(mach_vm_address_t addr) {

 typedef struct LLDBStackAddress {
 mach_vm_address_t *addresses;
 uint32_t count = 0;
 } LLDBStackAddress; // 1

 LLDBStackAddress stackaddress; // 2
 __unused mach_vm_address_t address = (mach_vm_address_t)addr;
 __unused task_t task = mach_task_self_; // 3

 stackaddress.addresses = (mach_vm_address_t *)calloc(100,
 sizeof(mach_vm_address_t)); // 4

 __mach_stack_logging_get_frames(task,
 address,
 stackaddress.addresses,
 100,
 &stackaddress.count); // 5

 // 6
 for (int i = 0; i < stackaddress.count; i++) {

 printf("[%d] %llu\n", i, stackaddress.addresses[i]);
 }

 free(stackaddress.addresses); // 7
}

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 383

Breakdown time!

1. As you know, LLDB only lets you return one object to be evaluated. But, as a creative

string-theory version of yourself, can create C structs that contain any types you

want to be returned.

2. Declare an instance of said struct for use within the function.

3. Remember mach_task_self that was referenced earlier? The global variable

mach_task_self_ is the value returned when calling mach_task_self.

4. Since you’re in a lower level, you don’t have ARC to help you allocate items on the

heap. You’re allocating 100 mach_vm_address_t’s, which is more than enough to

handle any stack trace.

5. The __mach_stack_logging_get_frames then executes. The addresses array of the

LLDBStackAddress struct will be populated with the addresses if there’s any stack

trace information available.

6. Print out all the addresses that were found

7. Finally, the mach_vm_address_t objects you created are freed.

Time to give it a whirl!

LLDB testing
Make sure the app is running, then tap the Generate a Ray! button. Pause execution

and enter the following into LLDB:

(lldb) search RayView -b

The search script will enumerate all objects of a certain type in the heap. This command

will hunt for all RayView instances that are currently alive.

The -b option will give you the --brief functionality, free of the class’s description or

debugDescription method. Depending on the amount of Ray Wenderlich faces on your

Simulator, you’ll get a variable amount of hits.

I have three wondrously magical Ray Wenderlich faces on my simulator, so I get the

following output:

(lldb) search RayView -b
RayView * [0x00007fa838414330]
RayView * [0x00007fa8384125f0]
RayView * [0x00007fa83860c000]

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 384

Grab any one of those addresses and execute the logic in the trace_address function:

(lldb) po trace_address(0x00007fa838414330)

You’ll get output that looks like the following truncated snippet:

[0] 4533269637
[1] 4460190625
[2] 4460232164
[3] 4454012240
[4] 4478307618
[5] 4482741703
[6] 4478307618
[7] 4479898204
[8] 4479898999
[9] 4479899371
...

These are the actual addresses of the code where this object is created. Verify the first

address is code in memory using image lookup:

(lldb) image lookup -a 4533269637

You’ll get the details about that function:

Address: libsystem_malloc.dylib[0x000000000000f485]
(libsystem_malloc.dylib.__TEXT.__text + 56217)
Summary: libsystem_malloc.dylib`calloc + 30

There’s more than one way to skin a memory address. Copy the address at frame three

and use SBAddress to get the information out of this address:

(lldb) script print lldb.SBAddress(4454012240, lldb.target)

You’ll get stack frame 3, like so:

ShadesOfRay`-[ViewController generateRayViewTapped:] + 64 at
ViewController.m:38

Navigating a C array with lldb.value
You’ll again use the lldb.value class to parse the return value of this C struct which was

generated inline while executing this function.

Set a GUI breakpoint at the end of the trace_address function.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 385

Use LLDB to execute the same function, but honor breakpoints, and remember to

replace the address with one of your RayView instances:

(lldb) e -lobjc++ -O -i0 -- trace_address(0x00007fa838414330)

Execution will stop on the final line of trace_address. You know the drill. Grab the

reference to the C struct LLDBStackAddress, stackaddress.

(lldb) script print lldb.frame.FindVariable('stackaddress')

If successful, you’ll get the synthetic format of the stackaddress variable:

(LLDBStackAddress) stackaddress = {
 addresses = 0x00007fa838515cd0
 count = 25
}

Cast this struct into a lldb.value and call the reference a:

(lldb) script a = lldb.value(lldb.frame.FindVariable('stackaddress'))

Ensure a is valid:

(lldb) script print a

You can now easily reference the variables you declared in the LLDBStackAddress struct

inside the lldb.value. Type the following into LLDB:

(lldb) script print a.count

You’ll get the stack frame count:

(uint32_t) count = 25

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 386

What about the addresses array inside the LLDBStackAddress struct?

(lldb) script print a.addresses[0]

That’s the memory address of the first frame. What about that generateRayViewTapped:

method found in frame 3?

(lldb) script print a.addresses[3]

You’ll get something similar to:

(mach_vm_address_t) [3] = 4454012240

Do you see how this tool is coming together? From finding chokepoints of items of

interest, to exploring code in modules, to researching tidbits of useful information in

https://opensource.apple.com/, to implementing proof of concepts in Xcode before

jumping to LLDB Python code, there’s a lot of power under the hood.

Don’t slow down — it’s command implementin’ time!

Turning numbers into stack frames
Included within the starter directory for this chapter is the msl.py script for malloc

script logging. You’ve already installed this msl.py script earlier in the “Setting up the

scripts” section.

Unfortunately, this script doesn’t do much at the moment, as it doesn’t produce any

output. Time to change that.

Open up ~/lldb/msl.py in your favorite editor. Find handle_command and add the

following code to it:

command_args = shlex.split(command)
parser = generateOptionParser()
try:
 (options, args) = parser.parse_args(command_args)
except:
 result.SetError(parser.usage)
 return

cleanCommand = args[0]
process = debugger.GetSelectedTarget().GetProcess()
frame = process.GetSelectedThread().GetSelectedFrame()
target = debugger.GetSelectedTarget()

All this logic shouldn’t be new to you, as it’s the “preamble” required to start up the
command. The only thing of interest is you opted to omit the posix=False argument

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 387

that’s sometimes used in the shlex.split(command). There’s no need to provide this
parameter, since this command won’t be handling any weird backslash or dash
characters. This means the parsing of the output from the options and args variables is
much cleaner as well.

Now that you have the basic script going, implement the meat of this script right below

the code you just wrote:

1
script = generateScript(cleanCommand, options)

2
sbval = frame.EvaluateExpression(script, generateOptions())

3
if sbval.error.fail:
 result.AppendMessage(str(sbval.error))
 return

val = lldb.value(sbval)
addresses = []

4
for i in range(val.count.sbvalue.unsigned):
 address = val.addresses[i].sbvalue.unsigned
 sbaddr = target.ResolveLoadAddress(address)
 loadAddr = sbaddr.GetLoadAddress(target)
 addresses.append(loadAddr)

5
retString = processStackTraceStringFromAddresses(
 addresses,
 target)

6
freeExpr = 'free('+str(val.addresses.sbvalue.unsigned)+')'
frame.EvaluateExpression(freeExpr, generateOptions())
result.AppendMessage(retString)

Here are the items of interest:

1. Use the generateScript function I supplied, which returns a string containing

roughly the same code as in the trace_address function.

2. Execute the code. You know this will return an SBValue.

3. Do a sanity check to see if the EvaluateExpression fails. If it does, dump out the

error and exit early.

4. This for-loop will enumerate the memory addresses in the val object, which are the

output of the script code, and pull them out into the addresses list.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 388

5. Now that the addresses are pulled out into a list, you pass that list to a predefined

function for processing. This will return the stack trace string you’ll spit out.

6. Finally, you manually allocate memory, as you are a good memory citizen and

always clean up after yourself. Most of these scripts you’ve written leak memory,

but now that you’re getting more advanced with this stuff, it’s time to do the right

thing and free any allocated memory.

Jump back to the Xcode LLDB console and reload your stuff:

(lldb) reload_script

Provided you have no errors, grab a reference to a RayView using the search LLDB

command:

(lldb) search RayView -b

Just for kicks, here’s another way to search for all UIViews whose class is implemented

in the ShadesOfRay module:

(lldb) search UIView -m ShadesOfRay -b

Once you have a reference to a RayView, run your newly created msl command on it, like

so:

(lldb) msl 0x00007fa838414330

You’ll get your expected output just like in Xcode!

frame #0 : 0x11197d485 libsystem_malloc.dylib`calloc + 30
frame #1 : 0x10d3cbba1 libobjc.A.dylib`class_createInstance + 85
frame #2 : 0x10d3d5de4 libobjc.A.dylib`_objc_rootAlloc + 42
frame #3 : 0x10cde7550 ShadesOfRay`-[ViewController
generateRayViewTapped:] + 64
frame #4 : 0x10e512d22 UIKit`-[UIApplication
sendAction:to:from:forEvent:] + 83

Congratulations! You’ve created a script that will give you the stack trace for an object.

Now it’s time to level up and give this script some cool options!

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 389

Stack trace from a Swift object
OK — I know you want me to talk about Swift code. You’ll cover a Swift example as well.

Included in the 50 Shades of Ray app is a Swift module, ingeniously named

SomeSwiftModule. Within this module is a class named SomeSwiftCode with a static

variable to get your singleton quota going.

The code in SomeSwiftCode.swift is about as simple as you can get:

public final class SomeSwiftCode {
 private init() {}
 static let shared = SomeSwiftCode()
}

You’ll use LLDB to call this singleton and examine the stack trace where this function

was created.

First off, you have to import your Swift modules! Enter the following into LLDB:

(lldb) e -lswift -O -- import SomeSwiftModule

You’ll get no result if the above was successful.

In LLDB, access the singleton, like so:

(lldb) e -lswift -O -- SomeSwiftCode.shared

You’ll get the address to this object:

<SomeSwiftCode: 0x600000033640>

Now you’ll pass this address in to the msl command. But simply copying and pasting

from the current output is waaaaaaaaaaaaaaaay too easy. Use the search command

instead and search for all subclasses of SwiftObject:

(lldb) search SwiftObject

You’ll get something like the following:

<__NSArrayM 0x6000004578b0>(
SomeSwiftModule.SomeSwiftCode
)

Again, Swift tries to hide the pointer from you in description. That’s part of its magic!

Use the --brief (-b) option one final time in the search command to grab the instance

and ignore the object’s description method.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 390

(lldb) search SwiftObject -b

This will grab the mangled name, but it’s the same reference in memory!

_TtC15SomeSwiftModule13SomeSwiftCode * [0x0000600000033640]

Use the msl command on this address:

(lldb) msl 0x0000600000033640

You’ll get your expected stack trace.

The highlighted frame here is clearly the frame where you call the singleton accessor

from LLDB. Yours might be different.

Let’s jump to one final topic I want to discuss briefly: how to build these scripts so you

"Don’t Repeat Yourself" when creating functionality in your LLDB scripts.

DRY Python code
Stop the app! In the schemes, select the Stripped 50 Shades of Ray Xcode scheme.

Ensure the MallocStackLogging environment variable is unchecked in the Stripped 50

Shades of Ray scheme.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 391

Good. Ray approves.

Time to try out the turn_on_stack_logging function. Build and run the application.

As you found out in the previous chapter, the "Stripped 50 Shades of Ray" scheme strips

the main executable’s contents so there’s no debugging information available.

Remember that factoid when you use the msl command.

Once the application is up and running, tap the Generate a Ray! button to create a new

instance of the RayView. Since the MallocStackLogging isn’t enabled, let’s see what

happens...

Pause execution and search for all RayViews by typing the following into LLDB:

(lldb) search RayView -b

You’ll get something like:

RayView * [0x00007fc23eb00620]

See if the msl command works on this address:

(lldb) msl 0x00007fc23eb00620

Nothing. That makes sense though, because the environment variable was not supplied

to the process. Time to circle back and call turn_on_stack_logging to see what it does.

Type the following in LLDB:

(lldb) po turn_on_stack_logging(1)

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 392

You’ll get some output similar to the kind you get when you supply your process with

the MallocStackLogging environment variable:

Resume execution and create another instance of RayView by tapping the bottom

button.

Once you’ve done that, pause execution and search for all instances of RayView again.

You’ll get a new address this time. Hopefully with the stack logging enabled, you’ll get a

backtrace for this.

Copy this new address and apply the msl command to it.

(lldb) msl 0x00007f8250f0a170

This will give you the stack trace!

This is awesome! You can enable malloc logging at will to monitor any allocation or

deallocation events without having to restart your process.

Wait wait wait. Hold on a second... there’s a symbol that’s stripped.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 393

Ray don’t like no stripped functions.

If you recall in the previous chapter, you created the sbt command which symbolicated

a stack trace. In the sbt.py script, you created the

processStackTraceStringFromAddresses function which took a list of numbers

(representing memory addresses for code) and the SBTarget. This function then

returned a potentially symbolicated string for the stack trace.

You’ve already done the hard work to write this function, so why not include this work

in the msl.py script to optionally execute it?

Jump to the very top of the msl.py function and add the following import statement:

import sbt

In the handle_command function in msl.py, hunt for the following code:

retString = sbt.processStackTraceStringFromAddresses(
 addresses,
 target)

Replace that code with the following:

if options.resymbolicate:
 retString = sbt.processStackTraceStringFromAddresses(
 addresses,
 target)
else:
 retString = processStackTraceStringFromAddresses(
 addresses,
 target)

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 394

You’re conditionally checking for the options.resymbolicate option (which I’ve already
set up for you). If True, then call the logic in the sbt module to see if it can generate a
string of resymbolicated functions.

Since you wrote that function to be generic and handle a list of Python numbers, you

can easily pass this information from your msl script.

Before you test this out, there’s one final component to implement. You need to make a

convenience command to enable the turn_on_stack_logging.

Jump up to the __lldb_init_module function (still in msl.py) and add the following line

of code:

debugger.HandleCommand('command alias enable_logging expression -lobjc -O
-- extern void turn_on_stack_logging(int); turn_on_stack_logging(1);')

This declares a convenience command to turn on malloc stack logging.

Woot! Done! Jump back to Xcode and reload your script:

(lldb) reload_script

Use the --resymbolicate option on the previous RayView to see the stack in its fully

symbolicated form.

(lldb) msl 0x00007f8250f0a170 -r

I am literally crying with happiness in the face of this wholly beautiful stack trace. Snif.

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 395

Where to go from here?
Hopefully, this full circle of idea, research & implementation has proven useful and

even inspired you to create your own scripts. There’s a lot of power hidden quietly away

in the many frameworks that already exist on your [i|mac|tv|watch]OS device.

All you need to do is find these hidden gems and exploit them for some crazy

commercial debugging tools, or even to use in reverse engineering to better understand

what’s happening.

Here’s a list of directories you should explore on your actual iOS device:

• /Developer/

• /usr/lib/

• /System/Library/PrivateFrameworks/

Go forth my little debuggers, and build something that completely blows my mind!

Advanced Apple Debugging Chapter 24: SB Examples, Malloc Logging

raywenderlich.com 396

Section V: DTrace

What? Youve never heard of DTrace?! It is AWESOME! DTrace is a tool that lets you

explore code in dynamic & static ways.

http://dtrace.org/guide/preface.html

You can create DTrace probes to be compiled into your code (static), or you can inspect

any code that is already compiled and running (dynamic). DTrace is a versatile tool: it

can be a profiler, an analyzer, a debugger or anything you want.

I often will use DTrace to cast a wide-reaching net over code I want to explore, when I

have no clue where I should start.

Chapter 25: Hello, DTrace

Chapter 26: Hello Script Bridging

Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 397

25Chapter 25: Hello, DTrace

Omagerd! It’s DTrace time! DTrace is one of the coolest tools you’ve (likely?) never

heard about. With DTrace, you can hook into a function or a group of functions using

what’s called a probe. From there, you can perform custom actions to query

information out of a specific process, or even system wide on your computer (and

monitor multiple users)!

If you’ve ever used the Instruments application it might surprise you that a lot of the

power underneath it is powered by DTrace.

In this chapter, you’ll explore a very small section of what DTrace is capable of doing by

tracing Objective-C code in already compiled applications. Using DTrace to observe iOS

frameworks (like UIKit) can give you an incredible insight into how the authors

designed their code.

raywenderlich.com 398

The bad news
Let’s get the bad news out of the way first, because after that it’s all exciting and cool

things from there. There are several things you need to know about DTrace:

• You need to disable Rootless for DTrace to work. Do you remember decades ago

in Chapter 1 where I mentioned you need to disable Rootless for certain functionality

to work? In addition to letting LLDB attach to any process on your macOS, DTrace

will not correctly function if System Integrity Protection is enabled. If you skipped

Chapter 1, go back and disable Rootless now. Otherwise, you’ll need to sit on the

sidelines for the remainder of this section.

• DTrace is not implemented for iOS devices. Although the Instruments application

uses DTrace under the hood for a fair amount of things, it can not run custom DTrace

scripts on your iOS device. This means you can only run a limited set of predefined

functionality on your iOS device. However, you can still run whatever DTrace scripts

you want on the Simulator (or any other application on your macOS) irregardless if

you’re the owner of the code or not.

• DTrace has a steep learning curve. DTrace expects you know what you’re doing

and what you’re querying. The documentation assumes you know the underlying

terminology for the DTrace components. You’ll learn about the fundamental

concepts in this chapter but there is quite literally a whole book on this topic which

explores the many aspects of DTrace that are out of the scope of what I’ll teach you.

In fact, it’s worth noting right up front, if DTrace interests you, get this book http://

www.brendangregg.com/dtracebook/index.html. It focuses on a wider range of topics

that might not pertain to your Apple debugging/reverse engineering strategies, but it

does teach you how to use DTrace.

Now that I’ve got that off my chest with the bad stuff, it’s time to have some fun.

Jumping right in
I am not going to start you off with boring terminology. Ain’t nobody got time for that.

Instead, you’ll first get your hands dirty, then figure out what you’re doing later.

Launch the iPhone X Simulator. Once alive, create a new Terminal window. Type the

following into Terminal:

sudo dtrace -n 'objc$target:*ViewController::entry' -p `pgrep
SpringBoard`

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 399

No, this will not secretly destroy your computer, you need that sudo in there because

DTrace is incredibly powerful and can query information about other users on your

computer. This means you need to be root to use it.

This DTrace command takes in two options, the name option (-n) and the PID (-p),

both of which will be discussed later. Make sure to surround your query in single quotes

or else it will not work. Take note of the backtics instead of single quotes that surround

pgrep SpringBoard.

If you typed out everything correctly, you’ll get output in the Terminal window similar

to the following:

dtrace: description 'objc$target:*ViewController::entry' matched 31245
probes

Navigate around the simulator while keeping an eye on the Terminal window.

This will dump out every hit (aka probe) that contains the Objective-C class name that

ends with "ViewController". Since you left the function field blank (don’t worry -

terminology descriptions are coming in the next section), it matches every single

Objective-C method so long as the class name ends with ViewController.

Once you get bored of looking at what pops up, kill the Terminal DTrace script with the

Ctrl + C combination.

Back in your Terminal, enter the following:

sudo dtrace -n 'objc$target:UIViewController:-viewWillAppear?:entry
{ ustack(); }' -p `pgrep SpringBoard`

There’s a couple of subtle changes this time:

• The *ViewController query has been changed to UIViewController.

• The query -viewWillAppear? has been added to the function location. Again, you’ll

cover terminology later. For now, all you need to know is instead of matching every

function for any class that contains the string "ViewController", this new DTrace

script will only match -[UIViewController viewWillAppear:]. The question mark

stands for a wildcard character in DTrace, which will resolve to the ':' in the

viewWillAppear: method.

• Finally, you are adding brackets with a function called ustack(). This logic will be

called every time -[UIViewController viewWillAppear:] gets hit. The ustack() is

one of DTrace’s built-in functions which dumps the userland stack trace (aka

SpringBoard for this case) when this method gets hit.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 400

• Keep an eye on that single quote which moved from the end of entry part to the end

of the squiggly bracket.

If you typed in everything correctly, you’ll get:

dtrace: description 'objc$target:UIViewController:-viewWillAppear?:entry
' matched 1 probe

Navigate around SpringBoard. Swipe up, swipe down, tap on the Edit button by

scrolling to the far left, whatever you need to do to trigger a UIViewController’s

viewWillAppear:.

When UIViewController’s viewWillAppear: gets hit, the stack trace will be printed out

in the Terminal.

Take note of some stack traces that don’t have the actual function name, but just a

module and address.

This is telling us we don’t have debugging information or an indirect symbol table to

reference the name of this function.

Once you get bored of exploring the stack trace of all the viewWillAppear:’s in the

SpringBoard process, kill the DTrace script again.

Now... Do you remember the whole spiel about objc_msgSend with registers and how

the first parameter will be the instance (or class) of an Objective-C class?

For example, when objc_msgSend executes, the function signature will look like:

objc_msgSend(self_or_class, SEL, ...);

You can grab that first parameter (aka the instance of the UIViewController) in DTrace

with the arg0 parameter. Unfortunately, you can only get the reference to the pointer -

you can’t run any Objective-C code, like [arg0 title].

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 401

Add the following line of code right before the ustack() function in your DTrace

command:

printf("\nUIViewcontroller is: 0x%p\n", arg0);

Your DTrace one-liner will now look like the following:

sudo dtrace -n 'objc$target:UIViewController:-viewWillAppear?:entry
{ printf("\nUIViewcontroller is: 0x%p\n", arg0); ustack(); }' -p `pgrep
SpringBoard`

Right before printing out the stack trace, you’re printing the reference to the

UIViewController that is calling viewWillAppear:.

If you were to copy the address of this pointer spat out by DTrace and attached LLDB to

SpringBoard, you will find that it points to a valid UIViewController (provided it hasn’t

been dealloc’d yet).

Note: It’s easy to get the pointer from arg0, but getting any other information (i.e.
the class name) is a tricky process.

You can’t execute any Objective-C/Swift code in the DTrace script that belongs to
the userland process (e.g. SpringBoard). All you can do is traverse memory with
the references you have.

In the final chapter, you’ll actually get the class name of arg0 in an Objective-C
call by traversing memory in a stripped binary, devoid of debugging information!

Let’s do one more DTrace example.

Kill any DTrace scripts and create a script which aggregates all the unique classes that

are being executed as you explore SpringBoard:

sudo dtrace -n 'objc$target:::entry { @[probemod] = count() }' -p `pgrep
SpringBoard`

Navigate around SpringBoard again. You’re not going to get any output yet, but as soon

as you terminate this script with Ctrl + C, you’ll get an aggregated list of all the times a

method for a particular class was executed. This is called Aggregations and you’ll learn

about this later.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 402

As you can see from my output, SpringBoard had 187075 method calls implemented by

NSObject that were hit during my run of the above DTrace one-liner.

It’s important to differentiate the fact that these were very likely instances of classes

which were subclasses of NSObject calling methods implemented by NSObject (i.e. the

subclass of the NSObject didn’t override any of these methods).

For example, calling -[UIViewController class] would count as a hit towards the total

methods executed by NSObject because UIViewController doesn’t override the

Objective-C method, class, nor does UIViewController’s parent class, UIResponder.

DTrace Terminology
Now that you’ve gotten your hands dirty on some quick DTrace one-liners, it’s time to

learn about the terminology so you actually know what’s going on in these scripts.

Let’s revisit a DTrace probe. You can think of a probe as a query. These probes are

events that DTrace can monitor either in a specific process or globally across across

your computer.

Consider the following DTrace one-liner:

dtrace -n 'objc$target:NSObject:-description:entry / arg0 = 0 /
{ @[probemod] = count(): }' -p `pgrep SpringBoard`

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 403

I would question the usefulness of this script, as this example will monitor NSObject’s

implementation of the description method in the process named SpringBoard. In

addition, this says as soon as the description method begins, execute logic to

aggregate the amount of times this method is called.

This DTrace one-liner can be further broken down into the following terminology:

• Probe Description: Encapsulates a group of items that specify 0 or more probes.

This consists of a provider, module, function, and name, each separated by colons.

Omitting any of these items between the colons will cause the probe description to

include all matches. You can use the * or ? operators for pattern matching. The ?

operator will act as a wildcard for a single character, while the * will match anything.

• Provider: Think of the provider as a grouping of code or common functionality. For

this particular chapter, you’ll primarily use the objc provider to trace into Objective-

C method calls. The objc provider groups all of the Objective-C code. You’ll explore

other providers later.

Note: The $target keyword is a special keyword which will match whatever PID
you supply DTrace. Certain providers (like objc) expect you to supply this.

Think of $target as a placeholder for the actual PID, which monitors Objective-C
in a specific process. If you do reference the $target placeholder, you must specify
the target PID through the -p or -c option flags in your DTrace command.

Typically this is done either by -p PID if you knew the exact PID, or more likely -p
`pgrep NameOFProcess`. The pgrep Terminal command will look for the PID whose
process name is NameOFProcess then return the PID, which then gets applied to the
$target variable.

• Module: In the objc provider, the module section is where you specify the class
name you wish to observe. Using the objc provider is a little unique in this sense,
because typically the module is used to reference a library in which the code is

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 404

coming from. In fact, in some providers, there’s no module at all! However, the
authors of the objc provider chose to use the module to reference the Objective-C
classname. For this particular example, the module is NSObject.

• Function: The part of the probe description that can specify the function name that

you wish to observe. For this particular example, the function is -description. The

authors of the objc provider used the + or - to determine if the Objective-C function

is a class or instance method (as you’d expect!). If you changed the function to

+description, it would query for any probes with +[NSObject description] instead.

• Name: This typically specifies the location of the probe within a function. Typically,

there’s the entry and return names which correspond to a function’s entry and exit.

In addition, within the objc provider, you can also specify any assembly instruction

offset to create a probe at! For this particular example, the name is entry, or the start

of the function.

• Predicate: An optional expression to evaluate if the action is a candidate for

execution. Think of the predicate as the condition in a if-statement. The action

section will only execute if the predicate evaluates to true. If you omit the predicate

section, then the action block will execute every time for a given probe. For this

particular example, the predicate is the / arg0 != 0 /, meaning the content

following the predicate will only get evaluated if arg0 is not nil.

• Action: The action to perform if the probe matches the probe description and the

predicate evaluates to true. This could be as simple as printing something to the

console, or performing more advanced functions. For this example, the action is the

@[probemod] = count(); code.

When all of these components are combined, this will form a DTrace clause. This

consists of the probe description, the optional predicate and optional action.

Put simply, a DTrace clause is made up as follows:

provider:module:function:name / predicate / { action }

DTrace “one-liners” can comprise multiple clauses which can monitor different items

with the probe description, check for different conditions in the predicate and execute

different logic with different actions.

So, with the example:

dtrace -n 'objc$target:NSView:-init*:entry' -p `pgrep -x Xcode`

You have a probe description of objc$target:NSView:-init*:entry, which includes
NSView as the module, -init* as the function, and entry as the name with no predicate

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 405

and no action. DTrace produces a default output for tracing (which you can silence with
the -q option). This default output only displays the function and name. For example, if
you were tracing -[NSObject init] without silencing the default DTrace action, your
DTrace output would look like the following:

dtrace: description ’objc$target:NSObject:-init:entry’ matched 1 probe
CPU ID FUNCTION:NAME
 2 512130 -init:entry
 2 512130 -init:entry
 2 512130 -init:entry
 2 512130 -init:entry

From the output, the -[NSObject init] got hit 4 times while the process was being

traced. You can tell DTrace to use a different formatted output by combining the -q

option with one of the print functions to display alernative formatting for output.

What does that -n argument mean again? The -n argument specifies the DTrace name

which can come in the form provider:module:function:name, module:function:name or

function:name. In addition, the name option can take an optional probe clause, which

is why you surround all your one-liner script content in single quotes to pass to the -n

argument.

Got it? No? You’ll repeat the above terminology steps with a useful DTrace option to

emphasize what you’ve learned.

Learning while listing probes
Included in the DTrace command options is a nice little option, -l, which will list all the

probes you’ve matched against in your probe description. When you have the -l option,

DTrace will only list the probes and not execute any actions, regardless of whether you

supply them or not.

This makes the -l option a nice tool to learn what will and will not work.

Let’s look at a probe description one more time while building up a DTrace script and

systematically limiting its scope. Consider the following, Do NOT execute this:

sudo dtrace -ln ’objc$target:::’ -p `pgrep -x Finder`

This will create a probe description on every Objective-C every class, method, and

assembly instruction within the Finder application. This is a very bad idea for a DTrace

script and will likely not run on your computer because of the hit count you’ll get.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 406

Note: I’ve supplied the -x option to pgrep because I could get multiple PIDs for a
pgrep query, which will screw up the placeholder, $target. The -x option says only
give me the PID(s) that match exactly for the name, Finder. If there are multiple
instances of a process. You can get the oldest one or newest one in pgrep with the
-o or -n option. If this sounds confusing, play around with the pgrep command in
Terminal without DTrace to understand how it works.

Don’t execute the above script because it will take too long. However, execute the rest

of these scripts so you understand what’s happening.

Let’s filter this down a bit. In Terminal, type the following:

sudo dtrace -ln 'objc$target:NSView::' -p `pgrep -x Finder`

Press enter, then enter your password.

This will list a probe on every single method implemented by NSView for all of its

methods and every assembly instruction within each of those methods. Still a horrible

idea, but at least this one will actually print out after a second.

How many probes is this? You can get that answer by piping your output to the wc

command:

sudo dtrace -ln 'objc$target:NSView::' -p `pgrep -x Finder` | wc -l

On my macOS machine in 10.13 (at the time of writing), I get ~45k Objective-C DTrace

probes for any code pertaining to NSView within the Finder process. Wow.

Filter the probe description down some more:

sudo dtrace -ln 'objc$target:NSView:-initWithFrame?:' -p `pgrep -x
Finder`

This will filter the probe description down to every assembly instruction that’s executed

within -[NSView initWithFrame:] in addition to the entry and return probes. Notice

how I had to use a ? instead of a colon to specify the Objective-C selector (which takes a

parameter). This is because if I used a colon, then DTrace will incorrectly think I am

done with the function part and have moved onto specifying the name within the

DTrace probe. There’s also the - at the begining of the function description to indicate

this is an instance Objective-C method.

This is still too much output, I only want to setup a probe that will monitor the

beginning of the -[NSView initWithFrame:] method and no other parts.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 407

sudo dtrace -ln 'objc$target:NSView:-initWithFrame?:entry' -p `pgrep -x
Finder`

This will say to only set a probe to the beginning of -[NSView initWithFrame:] and no

other parts in this Objective-C method.

Using the -l option is a nice way to learn the scope of your probes before you shoot off

making your DTrace actions. I would recommend you make heavy use of the -l option

when you’re starting to learn DTrace.

A script that makes DTrace scripts
When working with DTrace, not only do you get to deal with an exceptionally steep

learning curve, you also get to deal with some cryptic errors if you get a build time or

runtime DTrace error (yeah, it’s on the same level of cryptic as some of those Swift

compiler errors).

To help mitigate these build issues as you learn DTrace, I’ve created a lovely little script

called tobjectivec.py (trace Objective-C), which is an LLDB Python script that will

generate a custom DTrace script for you so long as you ask it real nice like.

Note: Oh yeah, now is a good time to mention you can create DTrace scripts as
well as DTrace one-liners. As the complexity in your DTrace logic rises, it becomes
a better idea to use a script. For simple DTrace queries, stick with the one-liners.

You’ll find the tobjectivec.py script located within the starter directory for this chapter.

I am assuming you went through Chapter 22, “SB Examples, Improved Lookup” and

have installed the lldbinit.py script and have stuck it in your ~/lldb folder. Provided

you did this, all you have to do is copy/paste the tobjectivec.py script into your ~/lldb

directory and it will be launched next time LLDB starts up.

If you haven’t done this yet, go back to Chapter 22 and follow the instructions for

installing the lldbinit.py file. Alternatively, if you’re extremely stubborn, I suppose

you can install this tobjectivec.py manually by augmenting your ~/.lldbinit file.

Exploring DTrace through tobjectivec.py
Time to take a whirlwind tour of this script while exploring DTrace on Objective-C code.

Included in the starter folder is the recycled project Allocator. Open that project up,

build, run, then pause in the debugger.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 408

Once you’ve got the Allocator project paused, bring up the LLDB console and type the
following:

(lldb) tobjectivec -g

Typically, the tobjectivec script will generate a script in the /tmp/ directory of your

computer. However, this -g option says that you’re debugging your script and displays

the output to LLDB instead of creating a file in /tmp/. With the -g (or --debug) option,

your current script will be displayed to the console.

This dry run of the tobjectivec.py with no extra parameters will produce the following

output:

#!/usr/sbin/dtrace -s /* 1 */

#pragma D option quiet /* 2 */

dtrace:::BEGIN { printf("Starting... use Ctrl + c to stop\n"); } /* 3 */
dtrace:::END { printf("Ending...\n"); } /* 4 */

/* Script content below */

objc$target:::entry /* 5 */
{
 printf("0x%016p %c[%s %s]\n", arg0, probefunc[0], probemod,
(string)&probefunc[1]); /* 6 */
}

Let’s break this down:

1. When executing a DTrace script, the first line needs to be #!/usr/sbin/dtrace -s or

else the script might not run properly.

2. This line says to not list the probe count nor perform the default DTrace action

when a probe fires. Instead, you’ll give DTrace your own custom action.

3. This is one third of the DTrace clauses within this script. There are probes for

DTrace that monitor for certain DTrace events... like when a DTrace script is about

to start. This says, as soon as DTrace starts, print out the "Starting... use Ctrl +

c to stop" string.

4. Here’s another DTrace clause that prints out "Ending..." as soon as the DTrace

script finishes.

5. This is the DTrace probe description of interest. This says to trace all the Objective-

C code found in whatever process ID you supply to this script.

6. The action part of this clause prints out the instance of the Objective-C probe that
was triggered, followed by Objective-C styled output. In here, you can see

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 409

probefunc and probemod being utilized which will be a char* representation of
the function and module. DTrace has several builtin variables that you can use,
probefunc & probemod being two of them. You also have probeprov and
probename at your disposal. Remember the module will represent the class name
while the function will represent the Objective-C method. This takes a combination
of the probemod & probefunc and displays it in the pretty Objective-C syntax you’re
accustomed to.

Now you’ve got an idea of this script, remove the -g option so you’re no longer using

the debug option. Type in LLDB:

(lldb) tobjectivec

You’ll get different output this time:

Copied script to clipboard... paste in Terminal

Your clipboard’s contents have been modified. Jump over to your Terminal, then paste

in the contents of your clipboard. Here’s mine, but yours will of course be different:

sudo /tmp/lldb_dtrace_profile_objc.d -p 95129 2>/dev/null

The content you originally saw is now dumped into /tmp/lldb_dtrace_profile_objc.d. If

you are at all paranoid about what this script does, I recommend you cat it first to

ensure you know what it’s doing.

The script provides the process identifier that LLDB is attached to (so you wouldn’t

have to type pgrep Allocator).

Once you get your password prompt, enter in you password to get those root privs:

$ sudo /tmp/lldb_dtrace_profile_objc.d -p 95129 2>/dev/null
Password:
Starting... use Ctrl + c to stop

Wait until the DTrace script inidicates to you that it’s starting.

With both Xcode and Terminal visible, type a simple po [NSObject class] in the

console. Check out the slew of Objective-C messages that get spat out for just this

method.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 410

This will prepare you for what’s about to come. Resume execution using LLDB, like so:

(lldb) continue

Navigate around the Allocator app (tap on views, bring down the in-call status bar in

the Simulator with ⌘ + Y) iOS Simulator while keeping an eye on the DTrace Terminal

window.

Scary, right?

This is too much stuff. Let’s filter some of the noise by adding content to the module

specifier.

Back in Xcode, pause execution of the Allocator process and bring up LLDB.

Generate a new script that only focuses on Objective-C classes that have the phrase

StatusBar in it’s name. Type the following in LLDB:

(lldb) tobjectivec -m *StatusBar* -g

This will do a dry run and give you the following truncated output:

objc$target:*StatusBar*::entry
{
 printf("0x%016p %c[%s %s]\n", arg0, probefunc[0], probemod,
(string)&probefunc[1]);
}

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 411

Notice how the module portion of the probe has changed. The * can be thought of as .*

that you know and love in your regular expressions. This means you’re querying for

probes that contain the case sensitive word StatusBar for any Objective-C classes when

the probe enters the start of the function.

In LLDB, remove the -g option so this script will get copied to your clipboard, then re-

execute the command.

(lldb) tobjectivec -m *StatusBar*

Jump over to your Terminal window. Kill the previous DTrace instance by pressing Ctrl

+ C, then paste in your new script.

 sudo /tmp/lldb_dtrace_profile_objc.d -p 2646 2>/dev/null

Resume execution back in Xcode.

Jump to the Simulator and toggle the in-call status bar using ⌘ + Y or rotate the

Simulator by using ⌘ + ← or ⌘ + → while keeping an eye on the DTrace Terminal

window.

You’ll get a slew of output again.

You can use DTrace to cast a wide net on code with minimal performance hits and

quickly drill down when you need to.

Tracing debugging commands
I often find it insightful to know what’s happening behind the scenes when I’m

executing simple debugging commands and the code that’s going on behind them to

make it work for me.

Observe how many Objective-C method calls it takes to make a simple Objective-C

NSString.

Back in LLDB, type the following:

(lldb) tobjectivec

Paste the contents in the Terminal window, but do not resume execution in LLDB.

Instead, just type the following:

(lldb) po @"hi this is a long string to avoid tagged pointers"

As soon as you press enter, check out the DTrace Terminal window and see what gets

spat out. You’ll get something similar to the following:

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 412

We just printed out a simple NSString and look how many Objective-C calls this took!

Here’s one for all you Swift “purists” out there.

Clear the Terminal screen using (⌘ + K), make sure the DTrace Terminal script is still

running. Head back to LLDB and type the following:

(lldb) expression -l swift -O -- class b { }; b()

You are using the Swift debugging context to create a pure Swift class then

instantiating it. Observe the Objective-C method calls when this class is created.

DTrace will dump out:

0x00000001087541b8 +[SwiftObject class]
0x0000000119149778 +[SwiftObject initialize]
0x0000000119149778 +[SwiftObject class]

If you were to copy any of the addresses down spat out by DTrace and then po that,

you’d be greeted with an onslaught of Objective-C method calls for this pure Swift

class.

A "pure" Swift class ain’t as pure as you thought, right?

Tracing an object
You can use DTrace to easily trace method calls for a particular reference.

Remove the previous DTrace script with Ctrl + C.

While the application is paused, use LLDB to get the reference to the UIApplication.

Make sure you are in an Objective-C stack frame.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 413

(lldb) po UIApp

You’ll get something like:

<UIApplication: 0x7fa774600f90>

Copy the reference and use this to build a predicate which only stops when this

reference is arg0 — remember, objc_msgSend’s param is a instance of a Class or the Class

itself.

(lldb) tobjectivec -g -p 'arg0 == 0x7fa774600f90'

You’ll get the dry run output of your script printed to the console similar to the

following:

#!/usr/sbin/dtrace -s

#pragma D option quiet
dtrace:::BEGIN { printf("Starting... use Ctrl + c to stop\n"); }
dtrace:::END { printf("Ending...\n"); }

/* Script content below */

objc$target:::entry / arg0 == 0x7fa774600f90 /
{
 printf("0x%016p %c[%s %s]\n", arg0, probefunc[0], probemod,
(string)&probefunc[1]);
}

Looks good! Execute the command again without the -g option:

(lldb) tobjectivec -p 'arg0 == 0x7fa774600f90'

Resume execution in LLDB, then paste your script into Terminal.

Trigger the home button, (⌘ + Shift + H) or the status bar (⌘ + Y) in the Simulator.

This is dumping every Objective-C method call on the [UIApplication

sharedApplication] instance.

Oh, is that too much output to look at? Then aggregate the content!

Back in Xcode, pause execution and in LLDB:

(lldb) tobjectivec -g -p 'arg0 == 0x7fa774600f90' -a '@[probefunc] =
count()'

This will produce the following script:

#!/usr/sbin/dtrace -s

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 414

#pragma D option quiet
dtrace:::BEGIN { printf("Starting... use Ctrl + c to stop\n"); }
dtrace:::END { printf("Ending...\n"); }

/* Script content below */

objc$target:::entry / arg0 == 0x7fa774600f90 /
{
 @[probefunc] = count()
}

You know the drill. Rerun the above tobjectivec command without the -g option, then

paste your clipboard contents into Terminal and resume execution in LLDB.

No content will be displayed in Terminal yet. But DTrace is quietly aggregating every

method that is being sent to the UIApplication instance.

Move around in the Simulator to get a healthy count of methods being sent to the

UIApplication. As soon as you kill this script with the usual Ctrl + C, DTrace will dump

out the total count of all the Objective-C methods that were applied to the

UIApplication instance.

Other DTrace ideas
Here’s some other ideas for you to try out on your own time:

Trace all the initialization methods for all objects:

(lldb) tobjectivec -f ?init*

Monitor inter-process communication related logic (i.e. Webviews, keyboards, etc):

(lldb) tobjectivec -m NSXPC*

Print the UIControl subclass which is handling your starting touch event on your iOS

device:

(lldb) tobjectivec -m UIControl -f -touchesBegan?withEvent?

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 415

Where to go from here?
This is only the tip of the DTrace iceberg. There’s a lot more that is possible with

DTrace.

I would recommend you check out the following URLs as they are a great resource for

learning DTrace.

• https://www.bignerdranch.com/blog/hooked-on-dtrace-part-1/

• https://www.objc.io/issues/19-debugging/dtrace/

In the next chapter, you’ll take a deeper dive into whats possible with DTrace and

explore profiling Swift code.

Advanced Apple Debugging Chapter 25: Hello, DTrace

raywenderlich.com 416

26
Chapter 26: Intermediate
DTrace

This chapter will act as a grab-bag of more DTrace fundamentals, destructive actions

(yay!), as well as how to use DTrace with Swift. I’ll get you excited first before going into

theory. I’ll start with how to use DTrace with Swift then go into the sleep-inducing

concepts that will make your eyes water. Nah, trust me, this will be fun!

In this chapter, you’ll learn additional ways DTrace can profile code, as well as how to

augment existing code without laying a finger on the actual executable itself. Magic!

raywenderlich.com 417

Getting started
We’re not done picking on Ray Wenderlich. Included in this chapter is yet another

movie-title inspired project with Ray’s name spliced into it.

Open up the Finding Ray application in the starter directory for this chapter. No need

to do anything special for setup. Build and run the project on the iPhone X simulator.

The majority of this project is written in Swift, though many Swift subclasses inherit

from NSObject as they need to be visually displayed (if it's an on-screen component, it

must inherit from UIView, which inherits from NSObject, meaning Objective-C)

DTrace is agnostic to whatever Swift code inherits from whatever class as it’s all the

same to DTrace. You can still profile Objective-C code subclassed by a Swift object so

long as it inherits from NSObject using the objc$target provider. The downside to this

approach is if there are any new methods implemented or any overridden methods

implemented by the Swift class, you’ll not see them in any Objective-C probes.

DTrace & Swift in theory
Let’s talk about how one can use DTrace to profile Swift code. There are some pros

along with some cons that should be taken into consideration.

First, the happy news: Swift works well with DTrace modules! This means it’s very easy

to filter out Swift code based on the particular module it’s implemented in. The module

(aka the probemod) will likely be the name of your target in Xcode which contains the

Swift code (unless you’ve changed the target name in Xcode’s build settings).

This means you can filter the following Swift code implemented in the SomeTarget

module like so:

pid$target:SomeTarget::entry

This will set a probe on the start of every single function implemented inside the

SomeTarget module. Since the pid$target goes after all the non-Objective-C code, this

probe will pick C & C++ code as well, but as you’ll see in a second, that’s easy to filter

out with a well-designed query.

Now for the bad news. Since the information about the module is taken up, the Swift

classname and function name all go into the DTrace function section (aka probefunc)

for a Swift method. This means you need to be a little more creative with your DTrace

querying.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 418

In the previous iteration of Swift (Swift 3), the probefunc Swift names returned by

DTrace were the mangled Swift names, but that's no longer applicable in Swift 4! DTrace

now uses the unmangled Swift names in the output!

So without further ado, let’s look at a quick example of a Swift DTrace probe.

Imagine you have a subclass of UIViewController named ViewController which only

overrides viewDidLoad. Like so:

class ViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 }
}

If you want to create a breakpoint on this function, the fullname to this breakpoint

would be the following:

SomeTarget.ViewController.viewDidLoad() -> ()

No surprise there; you’ve beaten that concept to death in Section 1. If you wanted to

search for every viewDidLoad implemented by Swift in the SomeTarget target (catchy

name, right?), you could create a DTrace probe description that looks like the following:

pid$target:SomeTarget:*viewDidLoad*:entry

This effectively says, "So long as SomeTarget and viewDidLoad are in the function

section, gimme the probe."

Time to try this theory out in the Finding Ray application.

DTrace & Swift in Practice
If the Finding Ray application is not already running, spark it up. iPhone X Plus

Simulator. You know what’s up.

Create a fresh window in Terminal and type the following:

sudo dtrace -n 'pid$target:Finding?Ray::entry' -p `pgrep "Finding Ray"`

I chose an Xcode project name that has a space on purpose. Take note of what you need

to do to resolve spaces in an Xcode target when using a DTrace script. The probemod

section uses a ? as a placeholder wildcard character for the space. In addition, you need

to surround your query when pgrep’ing for the process name, otherwise it won’t work.

After you’ve finished typing your password, you’ll get ~240 probe entry hits for all the

non-Objective-C functions inside the Finding Ray module.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 419

Click on Ray and drag him around in the Simulator while keeping an eye on all the

methods that are getting hit in the Terminal.

There’s still a bit too much noise. You only want the Swift functions to only be

displayed. No need to see the probe ID nor the CPU columns.

Kill the DTrace script and replace it with the following:

sudo dtrace -qn 'pid$target:Finding?Ray::entry { printf("%s\n",
probefunc); } ' -p `pgrep "Finding Ray"`

It’s subtle, but you’ve added the -q (or --quiet) option. This will tell DTrace to not

display the number of probes you’ve found, nor to display its default output when a

probe gets hit. Fortunately, you’ve also added a printf statement to spit out the

probefunc manually instead.

Wait for DTrace to start up, then drag again.

Much prettier. Unfortunately, you’re still getting some methods the Swift compiler

generated that I didn’t write. You don’t want to see any code the Swift compiler has

created; you only want to see code I wrote in my Swift classes.

Kill the previous DTrace script and augment this probe description to only contain code

that you’ve implemented, and not that of the Swift compiler:

sudo dtrace -qn 'pid$target:Finding?Ray::entry { printf("%s\n",
probefunc); } ' -p `pgrep "Finding Ray"` | grep -E "^[^@].*\."

Jump over to the Simulator and drag Ray around. Notice the difference?

QuickTouchPanGestureRecognizer.delaysTouchesBegan.getter
ViewController.handleGesture(panGesture:)

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 420

ViewController.dynamicAnimator.getter
ViewController.snapBehavior.getter
ViewController.containerView.getter
MotionView.animate(isSelected:)

This is piping the output to grep which is using a regular expression query to say return

stuff anything that doesn't contain a "@" and contains a period in the output. This

essentially is saying dodn't return any @objc bridging methods and a period is

gauranteed in any Swift code you write thanks to module namespacing.

One final addition. Augment the script to remove the grep filtering, and instead trace all

Swift function entries and exits in the "Finding Ray" module, and use DTrace’s

flowindent option.

The flowindent option will properly indent function entries and returns.

sudo dtrace -qFn 'pid$target:Finding?Ray::*r* { printf("%s\n",
probefunc); } ' -p `pgrep "Finding Ray"`

There are a couple of items to note on this one. You’ve added the -F option for

flowindent. Check out the name section in the probe description, *r*. What does this

do?

From a DTrace standpoint, most functions in a process have entry, return and function

offsets for every assembly instruction. These offsets are given in hexadecimal. This says

“give me any name that contains the letter 'r'.”

This returns both the entry & return in the probe description name, but omits any

function offsets since assembly only goes as high as f. Clever, eh?

With both the enter & return probes of each Swift function enabled, you can clearly

see what functions are being executed and where they’re being executed from.

Wait for DTrace to start, then drag Ray Wenderlich’s face around. You’ll get pretty

output that looks like this:

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 421

Hehehe... thought you would get a kick out of that one!

DTrace variables & control flow
You’ll jump into a bit of theory now, which you will need for the remainder of this

section.

DTrace has several ways to create and reference variables in your script. All of them

have their own pros and cons as they battle between speed and convenience of use in

DTrace.

Scalar Variables
The first way to create a variable is to use a scalar variable. These are simple variables

that can take only take items of fixed size. You don’t need to declare the type of scalar

variables, or any variables for that matter in your DTrace scripts.

I tend to lean towards using a scalar variable in DTrace scripts to represent a Boolean

value, which is due to the limited conditional logic with DTrace — you only have

predicates and ternary operators to really branch your logic.

For example, here is a practical case to use a scalar variable:

#!/usr/sbin/dtrace -s
#pragma D option quiet

dtrace:::BEGIN
{
 isSet = 0;
 object = 0;
}
objc$target:NSObject:-init:return / isSet == 0 /

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 422

{
 object = arg1;
 isSet = 1;
}
objc$target:::entry / isSet && object == arg0 /
{
 printf("0x%p %c[%s %s]\n", arg0, probefunc[0], probemod,
(string)&probefunc[1]);
}

This script declares two scalar variables: the isSet scalar variable will check and see if

the object scalar variable has been set. If not, the script will set the the next object to

the object variable. This script will trace all Objective-C method calls that are being

used on the object variable.

Clause-local variables
The next step up are clause-local variables. These are denoted by the word this-> used

right before the variable name and can take any type of value, including char*’s.

Clause-local variables can survive across the same probe. If you you try to reference

them on a different probe, it won’t work. For example, consider the following:

pid$target::objc_msgSend:entry
{
 this->object = arg0;
}

pid$target::objc_msgSend:entry / this->object != 0 / {
 /* Do some logic here */
}

obc$target:::entry {
 this-f = this->object; /* Won’t work since different probe */
}

I tend to stick with clause-local variables as much as I can since they’re quite fast and I

don’t have to manually free them like I do with the next type of variable...

Thread-local variables
Thread-local variables offer the most flexibility at the price of speed. Additionally, you

have to manually release them, otherwise you’ll leak memory. Thread-local variables

can be used by preceding the variable name with self->.

The nice thing about thread-local variables is they can be used in different probes, like

so:

objc$target:NSObject:init:entry {
 self->a = arg0;

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 423

}

objc$target::-dealloc:entry / arg0 == self->a / {
 self->a = 0;
}

This will assign self->a to whatever object is being initialized. When this object is

released, you’ll need to manually release it as well by setting a to 0.

With variables in DTrace out of the way, let’s talk about how you can use variables to

execute conditional logic.

DTrace conditions
DTrace has extremely limited conditional logic built in. There’s no such thing as the if/

else-statement in DTrace! This is a conscious decision, because a DTrace script is

designed to be fast.

However, it does present a problem for you when you want to conditionally perform

logic based upon a particular probe, or information contained within that probe.

To get around this limitation, there are two notable methods you can use to perform

conditional logic.

The first workaround is to use a ternary operator.

Consider the following contrived Objective-C logic:

int b = 10;
int a = 0;

if (b == 10) {
 a = 5;
} else {
 a = 6;
}

This can be rewritten in DTrace to use a ternary operator:

b = 10;
a = 0;
a = b == 10 ? 5 : 6

Here’s another example of conditional logic with no else-statement:

int b = 10;
int a = 0;
if (b == 10) {
 a++;
}

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 424

In DTrace form, this would look like:

b = 10;
a = 0;
a = b == 10 ? a + 1 : a

The other solution to this is to use multiple DTrace clauses along with a predicate. The

first DTrace clause will setup the information needed by the second clause to see if it

should perform the action in the predicate.

I know you probably forgot all the terminology for these DTrace components so let’s

also look at an example for this.

For example, let’s say you wanted to trace every call in between the start and stop of a

function. Typically, I would recommend just setting a DTrace script to catch everything

and then use LLDB to execute the command. But what if you wanted to do this solely in

DTrace?

For this particular example, you want to trace all Objective-C method calls being

executed by -[UIViewController initWithNibName:bundle:] with the following DTrace

script:

#!/usr/sbin/dtrace -s
#pragma D option quiet

dtrace:::BEGIN
{
 trace = 0;
}

objc$target:target:UIViewController:-initWithNibName?bundle?:entry {
 trace = 1
}

objc$target:target:::entry / trace / {
 printf("%s\n", probefunc);
}

objc$target:target:UIViewController:-initWithNibName?bundle?:return {
 trace = 0
}

As soon as the initWithNibName:bundle: is entered, the trace variable is set. From

there on out, every single Objective-C method is displayed until

initWithNibName:bundle: returns.

Not being able to use loops and conditions can appear annoying at first when writing

DTrace scripts, but think of not relying on the common programming idioms you’ve

become accustomed to as a nice brain teaser.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 425

Time for another big discussion: inspecting process memory in your DTrace scripts.

Inspecting process memory
It may come as surprise, but the DTrace scripts you’ve been writing are actually

executed in the kernel itself. This is why they’re so fast and also why you don’t need to

change any code in an already compiled program to perform dynamic tracing. The

kernel has direct access!

DTrace has probes all over your computer. There are probes in the kernel, there’s probes

in userland, there’s even probes to describe the crossing between the kernel and

userland (and vice versa) using the fbt provider.

Here’s a visualization showing a very very small percentage of the DTrace probes on

your computer.

Narrow down your focus to just two probes of the thousands by exploring the open

system call and the open_nocancel system call. Both of these functions are

implemented in the kernel and are responsible for any type of file openings for reading,

writing, or both.

The system open has the following function signature:

int open(const char *path, int oflag, ...);

Internally, open will sometimes call the open_nocancel, which has the following

function signature:

int open_nocancel(const char *path, int flags, mode_t mode);

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 426

Both of these functions contain a char* as the first parameter. You’ve already grabbed

parameters from functions before in DTrace probes using arg0 and arg1.

What you haven’t done yet is dereference those pointers to look at their data. Just as in

the previous chapters with SBValue, you can spelunk in memory with DTrace and even

get the string representation of this first parameter in the open system calls.

There’s one gotcha though. A DTrace script executes in the kernel. The argX parameters

are given to you, but these are pointers to the value in the address space of the

program. However, DTrace runs in the kernel. So you need to manually copy whatever

data you are reading into the kernel’s memory space.

This is done through the copyin and copyinstr functions. copyin will take an address

with the amount of bytes you want to read, while the copyinstr expects to copy a char*

representation.

In the case of the open family of system calls, you could read the first parameter as a

string with the following DTrace clause:

sudo dtrace -n 'syscall::open:entry { printf("%s", copyinstr(arg0)); }'

For example, if a process whose PID was 12345 was attempting to open "/

Applications/SomeApp.app/", DTrace could read this first parameter using

copyinstr(arg0).

For this particular example, DTrace will read in arg0, which for this example equals
0x7fff58034300. With the copyinstr function, the 0x7fff58034300 memory address will

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 427

be dereferenced to grab the char* representation for the pathname, "/Applications/
SomeApp.app/".

Playing with open syscalls
With the knowledge you need to inspect process memory, create a DTrace script that

monitors the open family of system calls. In Terminal, type the following:

sudo dtrace -qn 'syscall::open*:entry { printf("%s opened %s\n",
execname, copyinstr(arg0)); ustack(); }'

This will print the contents of open (or open_nocancel) along with the program that

called the open* system call with the userland stack trace that was responsible for the

call.

Isn’t DTrace awesome!?

Augment your open family of system calls to only focus on the Finding Ray process.

sudo dtrace -qn 'syscall::open*:entry / execname == "Finding Ray" /
{ printf("%s opened %s\n", execname, copyinstr(arg0)); ustack(); }'

Note: The actions you perform with DTrace can sometimes produce errors to
stderr in Terminal. Depending on the error, you can get around this by creating
checks for appropriate input with a DTrace predicate, or you can filter your probe
description query with less probes. An alternative to this is to ignore all errors
produced by DTrace by adding 2>/dev/null in your DTrace one-liner. This
effectively tells your DTrace one-liner to pipe any stderr content (2 is the
standard error file descriptor) to be ignored. I often use this solution to cast a wide
net on probes that can be error-prone, but ignore any errors that my tracing
produces.

Rebuild an launch the application.

Stack traces will now only be displayed on any open* system call being called from the

Finding Ray application. Play around with the app in the Simulator a bit and see if you

can make it output something!

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 428

Filtering open syscalls by paths
Inside the Finding Ray project, I remember I used the image named Ray.pdf for

something, but I can’t remember where. Good thing I have DTrace along with grep to

hunt down the location of where Ray.pdf is being opened.

Kill your current DTrace script and modify the script so it pipes stderr straight to hell.

While you're doing that, append a grep query to it so it looks like:

sudo dtrace -qn 'syscall::open*:entry / execname == "Finding Ray" /
{ printf("%s opened %s\n", execname, copyinstr(arg0)); ustack(); }' 2>/
dev/null | grep Ray.png -A40

This pipes all stderr to nowhere, stdout to grep and searches for any references to the

Ray.png image. If there’s a hit, print out the next 40 lines.

Note: There’s actually a pretty awesome DTrace script called opensnoop found in /
usr/bin/ on your computer which has many options for monitoring the open
family of system calls and is wayyyyyyyy easier to use than writing these scripts.
But you wouldn’t learn anything if I just gave you the easy way out, right? Check
out this script on your own time, with a good ol’ man opensnoop. You won’t be
disappointed in what it can do.

There’s a more elegant way to do this without relying on piping (well, more elegant in

my opinion). You can use the predicate section of the DTrace clause to search the

userland char* input for the Ray.png string.

You’ll use the strstr DTrace function to do this check. This function takes two strings

and returns a pointer to the first occurrence of the second string in the first string. If it

can’t find an occurrence, it will return NULL. This means you can check if this function

equals NULL in the predicate to search for a path which contains Ray.png!

Augment your increasingly ugly — er, complex DTrace script to look like the following:

sudo dtrace -qn 'syscall::open*:entry / execname == "Finding Ray" &&
strstr(copyinstr(arg0), "Ray.png") != NULL / { printf("%s opened %s\n",
execname, copyinstr(arg0)); ustack(); }' 2>/dev/null

Build and rerun the application.

You threw out the grep piping and replaced it with a conditional check in the predicate

for anything containing the name Ray.png that’s opened in the Finding Ray process.

In addition, you’ve easily pinpointed the stack trace responsible for opening the

Ray.png image.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 429

DTrace & destructive actions
Note: What I am about to show you is very dangerous.

Let me repeat that: This next bit is very dangerous.

If you screw up a command you could lose some of your beloved images. Follow
along only at your own risk!

In fact, to be safe, please close any applications that pertain to using photos (i.e.
Photos, PhotoShop, etc). Neither I, nor the publisher are legally responsible for
anything that could happen on your computer.

You have been warned!

Heh... I bet that above legal section made you nervous.

You’ll use DTrace to perform a destructive action. That is, normally DTrace will only

monitor your computer, but now you’ll actually alter logic in your program.

You’ll monitor the open family of system calls that are executed by the Finding Ray

app. If one of the open system calls contain the phrase .png in its first parameter (aka

the parameter of type char* to the path it’s opening), you’ll replace that argument with

a different PNG image.

This can all be accomplished with the copyout and copyoutstr DTrace commands.

You’ll use the copyoutstr explicitly for this example. You’ll notice these name are

similar to copyin and copyinstr. The in and out in this context refer to the direction in

which you’re copying data, either into where DTrace can read it, or out to where the

process can read it.

In the projects directory, there is a standalone image named troll.png. Create a new

window in Finder with ⌘ + N, then navigate to your home directory by pressing ⌘ +

Shift + H. Drop troll.png into this directory (feel free to remove it when this chapter is

done). There’s a method to this madness — just bear with me!

Why did you need to do this? You’re about to write to memory in an existing program.

There’s only a finite amount of space that is already allocated for this string in the

program’s memory. This will likely be some long string because you’re in the iPhone

Simulator and your process (mostly) reads images found in its own sandbox.

Do you remember searching for Ray.png? Here’s that full path on my computer. Yours

will obviously be different.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 430

/Users/derekselander/Library/Developer/CoreSimulator/Devices/
97F8BE2C-4547-470C-955F-3654A8347C41/data/Containers/Bundle/Application/
102BDE66-79CB-453C-BA71-4062B2BC5297/Finding Ray.app/Ray.png

The plan of attack is to use DTrace with a shorter path to an image, which will result in

something like this in the program’s memory:

/Users/derekselander/troll.png\0veloper/CoreSimulator/Devices/
97F8BE2C-4547-470C-955F-3654A8347C41/data/Containers/Bundle/Application/
102BDE66-79CB-453C-BA71-4062B2BC5297/Finding Ray.app/Ray.png

You see that \0 in there? That’s the NULL terminator for char*. So essentially this string

is really just:

/Users/derekselander/troll.png

Because that’s how NULL terminated strings work!

Getting your path length
When writing data out, you’ll need to figure out how many chars your fullpath is to the

troll.png. I know the length of mine, but unfortunately, I don’t know your name nor

the name of your computer’s home directory.

Type the following in Terminal:

echo ~/troll.png

This will be dump the fullpath to the troll.png image. Hold onto this for a second as

you’ll paste this into your script. Also figure out how many characters this is in

Terminal:

echo ~/troll.png | wc -m

In my case, /Users/derekselander/troll.png is 31 char’s. But here’s the gotcha: You

need to account for the null terminator. This means the total length I need to insert my

new string needs to be an existing char* of length 32 or greater.

The arg0 in open* is pointing to something in memory. If you were to write in this

location with something longer than this string, then this could corrupt memory and

kill the program. Obviously, you don’t want this, so what you’ll do is stick troll.png in a

directory that has a shorter character count.

You’ll also perform checks via the DTrace predicate to ensure you have enough room as

well. C’mon, you’re a thorough and diligent programmer, right?

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 431

Type the following in Terminal, replacing /Users/derekselander and 32 with your

values:

sudo dtrace -wn 'syscall::open*:entry / execname == "Finding Ray" && arg0
> 0xfffffffe && strstr(copyinstr(arg0), ".png") != NULL &&
strlen(copyinstr(arg0)) >= 32 / { this->a = "/Users/derekselander/
troll.png"; copyoutstr(this->a, arg0, 32); }'

Rebuild and run Finding Ray while this new DTrace script is active.

Provided you’ve executed everything correctly, each time the Finding Ray process tries

to open a file that contains the phrase ".png", you’ll return troll.png instead.

Other destructive actions
In addition to copyoutstr and copyout, DTrace has some other destructive actions

worth noting:

• stop(void): This will freeze the currently running userland process (given by the pid

built-in argument). This is ideal if you want to stop execution of a userland program,

attach LLDB to it and explore it further.

• raise(int signal): This will raise a signal to the process responsible for a probe.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 432

• system(string program, ...): This lets you execute a command just as if you were in

Terminal. This has the added benefit of letting you access all the DTrace built-in

variables, such as execname and probemod, to use in a printf-style formatting.

I encourage you to explore these destructive actions (especially the stop() action) on

your own time. That being said, be careful with that system function. You can do a lot of

damage really easily if used incorrectly.

Where to go from here?
There are many powerful DTrace scripts on your macOS machine. You can hunt for

them using the man -k dtrace, then systematically man’ing what each script does. In

addition, you can learn a lot by studying the code in them. Remember, these are scripts,

not compiled executables, so source-code is fair game.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 433

Also, be very careful with destructive actions. That being said, you can put Ray

Wenderlich everywhere on your computer:

Isn’t that what you’ve always wanted?

In all seriousness, you can do some pretty crazy stuff to your computer and gain a lot of

insight using DTrace.

Advanced Apple Debugging Chapter 26: Intermediate DTrace

raywenderlich.com 434

27
Chapter 27: DTrace vs
objc_msgSend

You’ve seen how powerful DTrace is against Objective-C and Swift code which you have

the source for, or code that resides in a Framework like UIKit. You’ve used DTrace to

trace this code and make interesting tweaks all while performing zero modifications to

already compiled source code.

Unfortunately, when DTrace is put up against a stripped executable, it is unable to

create any probes to dynamically inspect those functions.

However, when exploring Apple code, you still have one very powerful ally on your side:

objc_msgSend. In this chapter you’ll use DTrace to hook objc_msgSend’s entry probe and

pull out the class name along with the Objective-C selector for that class.

By the end of this chapter, you’ll have LLDB generating a DTrace script which only

generates tracing info for code implemented within the main executable that calls

objc_msgSend.

raywenderlich.com 435

Building your proof-of-concept
Included in the starter folder is an app called VCTransitions, which is a very basic

Objective-C/Swift application that showcases a normal UINavigationController push

transition, as well as a custom push transition.

Open up this Xcode project, build and run on the iPhone X Simulator and take a quick

look around.

It's important to note, there are two schemes inside this application: VCTransitions

and Stripped VCTransitions. Make sure to select the VCTransitions scheme when

running. We'll talk more about the Stripped VCTransitions scheme in a second.

Note: Normally I don’t care about the exact version of the software you’re
running, so long as it’s iOS 11. This time, however, I insist you run iOS 11.1.x (or

earlier) since you’ll be viewing assembly that could change in a future release.
You’ll be exploring some assembly in this chapter, and I can’t guarantee it’s
unchanged in a new iOS version that I’ve not viewed (at the time of writing).

There are buttons to perform the two navigation pushes, and there’s also a button

named Execute Methods that will loop through all known Objective-C methods which

are implemented/overriden by a given Class. If the method takes no parameters, it

executes it.

For example, the first view controller displayed is ObjCViewController. If you tap

Execute Methods, it will call anEmptyMethod as well as all the getters for the overridden

properties, since all of those methods don’t require parameters.

Now, onto the fun stuff.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 436

Jump over to OjbCViewController.m and take a look at the IBAction methods
implemented by this class.

Make a DTrace one-liner in Terminal to ensure that you can see these methods getting

hit.

Make sure the Simulator is alive and running the VCTransitions project.

In Terminal:

sudo dtrace -n 'objc$target:ObjCViewController::entry' -p `pgrep
VCTransitions`

Press Enter to start this bad boy up. Enter your password when DTrace asks you then

head back over to the Simulator and start tapping on buttons. You’ll see the Terminal

DTrace window fill up with the IBAction methods implemented by ObjCViewController.

Now, tap one of the push buttons so you’re on the SwiftViewController view

controller.

Although this is a subclass of UIViewController, tapping on the IBActions will not

produce any results for the objcPID probe. Even though there are dynamic methods

implemented or overridden by SwiftViewController, and being executed through

objc_msgSend, the actual code is Swift code (even those @objc bridging methods).

Pop quiz: If SwiftViewController contains the following code:

class SwiftViewController: UIViewController,
UIViewControllerTransitioningDelegate {
 @objc dynamic var coolViewDTraceTest: UIView? = nil
 @objc dynamic var coolBooleanDTraceTest: Bool = false

 // ...

Will an Objective-C DTrace probe pick up coolBooleanDTraceTest or

coolViewDTraceTest?

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 437

To answer this, let's first see if these Swift properties are even exposed as Objetive-C

probes. They should be, right? They have the @objc dynamic attributes.

Type the following in Terminal:

sudo dtrace -ln 'objc$target::*cool*Test*:entry' -p `pgrep VCTransitions`

Dang, only the properties for the Objective-C ObjCViewController are displayed and

not SwiftViewControllers! This is because of Swift proposition 160 https://github.com/

apple/swift-evolution/blob/master/proposals/0160-objc-inference.md, which includes a

proposition that NSObject's no longer infer @objc. In addition, Swift will not create an

Objective-C symbol even for dynamic code.

This means you'll have to use the non-Objective-C provider to query Swift DTrace

probes.

You can confirm this by augmenting your DTrace script to dump any methods that

include the word cool followed sometime later by the word Test, like so:

sudo dtrace -n 'pid$target::*cool*Test*:entry' -p `pgrep VCTransitions`

This is another reason to go after objc_msgSend instead of the objc$target probe,

because calls to objc_msgSend will catch dynamically executed Swift code, where

objc$target will miss them.

Repeating your steps on a stripped build
Included within the project is a scheme called Stripped VCTransitions.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 438

This runs the exact same target (executable) as the VCTransitions app, except Xcode

will generate a stripped build that doesn’t contain any debugging information.

Select the Stripped VCTransitions scheme, make sure it’s on the iPhone X Simulator

(again on 11.1.x or earlier) and build and run.

Once running, pause the application and bring up LLDB. Search for any code that

belongs to SwiftViewController using your newly created image lookup alternative,

lookup command, you created in Chapter 22, “SB Examples, Improved Lookup” (if you

skipped that chapter, default back to using image lookup -rn).

(lldb) lookup SwiftViewController

Hmm... you won’t get any hits. Maybe it’s a Swift bug? Try dumping everything

pertaining to ObjCViewController:

(lldb) lookup ObjCViewController

Still nothing. What gives?

This executable has been stripped of it’s information. You can’t use the debugging

symbols typically available to you to reference an address in memory.

However, LLDB is smart enough to realize these locations in memory are, in fact,

functions. LLDB will generate a unique function name for the methods it doesn’t have

information for. The automatically generated function name will take the following

form:

___lldb_unnamed_symbol[FUNCTION_ID]$$[MODULE_NAME]

This means you can list all the functions LLDB has generated inside the VCTransitions

executable with the following lookup command:

(lldb) lookup VCTransitions

I get 292 hits, with the following truncated output:

...
___lldb_unnamed_symbol293$$VCTransitions

___lldb_unnamed_symbol294$$VCTransitions

___lldb_unnamed_symbol295$$VCTransitions

___lldb_unnamed_symbol296$$VCTransitions

Dang, LLDB can’t get the names of these functions. Do you think DTrace can read

content in a stripped binary?

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 439

Type the following in Terminal:

sudo dtrace -ln 'objc$target:ObjCViewController::' -p `pgrep
VCTransitions`

This queries the VCTransitions process for the count of probes containing the module

ObjCViewController, which is DTrace’s way of referencing an Objective-C class.

I get the following:

 ID PROVIDER MODULE FUNCTION NAME
dtrace: failed to match objc57009:ObjCViewController:: No probe matches
description

I can tell my PID is 57009 and I get 0 hits!

If I wanted to ensure that ObjCViewController was producing valid probes (which you

saw earlier), simply rebuild this project using the non-stripped Xcode scheme, then run

the above Terminal command again. I’ll leave that exercise to you if you’re interested in

proving this works.

How to get around no probes in a
stripped binary
So how can you architect a DTrace action and/or probe to get around this hurdle of not

being able to inspect a stripped binary?

Since you know Objective-C (and dynamic Swift) methods need to go through

objc_msgSend (or similar for super calls), you can use the knowledge you’ve learned

about objc_msgSend to figure out how to create a nice DTrace action that prints out the

name of the class along with the Objective-C selector.

A quick reminder about how objc_msgSend works. The function signature looks like

this:

objc_msgSend(instance_or_class, SEL, ...);

So, objc_msgSend takes a class or instance as the first parameter, the Objective-C

selector as the second, followed by a variable amount of arguments.

With that in mind, if you had the following code:

UIViewController *vc = [UIViewController new];
[vc setTitle:@"yay, DTrace"];

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 440

The compiler would translate it into the following pseudocode:

vc = objc_msgSend(UIViewControllerClassRef, "new");
objc_msgSend(vc, "setTitle", @"yay, DTrace");

From a DTrace standpoint, getting the Objective-C selector is rather easy. Just

copyinstr(arg1) and you’re golden. As you’ve learned earlier, this will copy the pointer

from arg1, the Objective-C selector (aka a char*), into kernel-land so DTrace can read

it.

Now for the hard part: you want the class name of the first parameter passed into

objc_msgSend as a char*.

DTrace won’t let you execute arbitrary methods, so you can’t rely on the Objective-C

runtime, or any of the methods it implements, to dig the information out for you.

Instead, you get to go spelunking through the memory of the arg0 instance and find the

char* yourself, which represents the class name, then automate it into a DTrace script.

Hey, this is the culmination of your DTrace skills coming together! You might as well go

all out.

Researching method calls using...
DTrace!
Let’s see if there are any documented ways to go after this thing. In the objc/runtime.h

header, you have the following declaration:

struct objc_class {
 Class isa OBJC_ISA_AVAILABILITY;

#if !__OBJC2__
 Class super_class
OBJC2_UNAVAILABLE;
 const char *name
OBJC2_UNAVAILABLE;
 long version
OBJC2_UNAVAILABLE;
 long info
OBJC2_UNAVAILABLE;
 long instance_size
OBJC2_UNAVAILABLE;
 struct objc_ivar_list *ivars
OBJC2_UNAVAILABLE;
 struct objc_method_list **methodLists
OBJC2_UNAVAILABLE;
 struct objc_cache *cache

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 441

OBJC2_UNAVAILABLE;
 struct objc_protocol_list *protocols
OBJC2_UNAVAILABLE;
#endif

} OBJC2_UNAVAILABLE;
/* Use `Class` instead of `struct objc_class *` */

Back in the Objective-C 2.0 days with a 64-bit machine, if you had a pointer at X which

pointed to a valid class, you could get to that const char *name described in the #if !

__OBJC2__:

po *(char *)(X + 0x10)

Unfortunately, this is rather dated. This class structure dates back to before Objective-C

2.0. Structs and pointer locations have long since changed. Apple has opted to make the

current layout of the objc_class structs a little less public for your viewing pleasure.

This means you need to hunt for a function that takes an Objective-C class (or instance

of the class) and returns a char* for the class so we can figure out what it’s doing.

Fortunately, jumping back to the objc/runtime.h header file, there’s also a function by

the name of class_getName. Don’t believe me? Execute open -h runtime.h in Terminal.

Looking at the headerfile, class_getName has the following signature:

/**
 * Returns the name of a class.
 *
 * @param cls A class object.
 *
 * @return The name of the class, or the empty string if \e cls is \c
Nil.
 */
OBJC_EXPORT const char *class_getName(Class cls)
 OBJC_AVAILABLE(10.5, 2.0, 9.0, 1.0);

This function takes a Class and returns a char*. You’ll use DTrace to trace this method

and see what methods this class is calling underneath the covers.

Hopefully, your VCTransitions app is still running. If not, re-run the application. Once

active, pause the application in LLDB.

Get the reference to the Class representing a UIView:

(lldb) p/x [UIView class]

You’ll get something similar:

(Class) $0 = 0x0000000109d4ce60 UIView

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 442

Take this reference to the UIView class and apply it to the class_getName function:

(lldb) po class_getName(0x0000000109d4ce60)

You'll get a number? Why is that?

0x000000010999319f

Oh yeah, duh... this function returns a C char*. You have to cast those:

(lldb) po (char *)class_getName(0x0000000109d4ce60)

You’ll now use DTrace to trace all the non Objective-C methods class_getName calls

behind the scenes.

Jump over to a fresh Terminal session and execute the following DTrace one-liner:

sudo dtrace -n 'pid$target:::entry' -p `pgrep VCTransitions`

All the while, LLDB should still be suspended when setting up your DTrace script.

Jump on back to LLDB and re-execute that class_getName function with the reference

to the UIView class. Your pointer to the UIView class will be different:

(lldb) po (char *)class_getName(0x0000000109d4ce60)

After you’ve executed the above command, the DTrace script will spit out the following

list of functions that were called for class_getName.

:~ sudo dtrace -n 'pid$target:::entry' -p `pgrep VCTransitions`
Password:
dtrace: description 'pid$target:::entry' matched 901911 probes
CPU ID FUNCTION:NAME
 6 1405417 class_getName:entry
 6 1405416 objc_class::demangledName(bool):entry
 6 566986 _NSPrintForDebugger:entry
 6 1405847 objc_msgSend:entry

It looks like that objc_class::demangledName(bool): function is a fun place to explore.

Kill the DTrace script. You don’t want it screwing with your LLDB breakpoints, as

setting a DTrace probe on a LLDB breakpoint can have unexpected consequences.

Once the DTrace script has terminated, set a breakpoint on

objc_class::demangledName(bool) with LLDB, like so:

(lldb) b objc_class::demangledName(bool)

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 443

Rerun the expression, but tell LLDB to honor breakpoints:

(lldb) exp -i0 -O -- class_getName([UIView class])

As soon as you press enter, LLDB will stop on this objc_class::demangledName(bool)

function.Take a good look at the assembly.

Scary assembly, part I
As always, this stuff looks scary at first. But when you systematically go through it, it’s

not that bad. You’ll actually break the assembly function into chunks to explore. The

first chunk will be between offset 0-55.

Inspect the registers so you know what you’re dealing with:

(lldb) po $rdi

You’ll get UIView output which is the description method for the UIView class. But why

is that the first parameter? The function signature seems to indicate it should be a bool.

Well, this is a C++ function, and C++ is like Objective-C in the way you call functions on

an object. There’s an implicit first parameter which is the object the function is being

called on. As mentioned throughout this book, the instance passed in as the first

register is not always the case with Swift.

Move onto the second param:

(lldb) po $rsi

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 444

You’ll get nil. This is the bool parameter. And nil is 0, so this is false.

Time to break this thing down. The offsets referred to here are the values within the

angle brackets. So offset 13 is <+13>.

• Offset 13: After this line, the function prologue is over. Time for the actual meat of

this function.

• Offset 17: This assigns esi to r12d. This is the Boolean that is passed in. We explored

rsi earlier and saw it was 0, so r12d will be 0 as well.

• Offset 20: rdi contains the UIView class reference and is assigning this value to r15.

• Offset 33: This offsets r15 by a value of 0x20 and dereferences it. i.e. rax =

(*([UIView class] + 0x20)).

• Offset 37: The value stored in rax is AND’d with 0x7ffffffffff8 and stored into rax.

• Offset 48: The value at rax is offset by 0x38 and then dereferenced and stored into

rbx i.e rbx = *(rax + 0x38).

• Offset 52-55: rbx is checked for zero. If it returns a non-zero number, then finish up

this function, which jumps to <+310>, which is right before the function epilogue.

If this check at offset 55 fails (i.e. if rbx is 0), execution will continue on to the next

assembly instruction, <+61>.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 445

The logic between offsets 0-55 is responsible for returning an Objective-C’s class back

to you as a char* if (and only if) that class has been properly loaded. This typically

happens when at least one method from that class (i.e., that method must be

implemented or overriden in that class) is executed.

For example, if a brand new class is called that hasn’t created any initializations during

the lifetime of your process, the logic between offsets 0-55 will return nil. You’ll build a

command regex to confirm this in a second...

Looking at the assembly, you can deduce the following.

If you have an already-initialized class at instance X, and if you offset X by 0x20 and

dereference this, the output would look like:

*(uint64_t *)(X + 0x20)

You then bitwise AND this value with 0x7ffffffffff8:

*(uint64_t *)(X + 0x20) & 0x7ffffffffff8

Next, take this value, offset it by 0x38 and dereference that:

*(uint64_t *)((*(uint64_t *)(X + 0x20) & 0x7ffffffffff8) + 0x38)

This is the final address, so you just need to cast it into the correct type, a char *:

(char *)*(uint64_t *)((*(uint64_t *)(X + 0x20) & 0x7ffffffffff8) + 0x38)

Now, if you have a reference to an NSObject, you know from Chapter 21, “Script Bridging

with SBValue & Language Contexts” that the memory address right at the start of the

object will point to the class itself (the isa pointer). If you don’t understand that, go

back and reread Chapter 21 — or else the remainder of this chapter will get pretty

intense. :]

Putting it all together, to get an instance’s class name as a char*, behold this

monstrosity:

(char *)*(uint64_t *)((*(uint64_t *)((*(uint64_t *)Instance_of_X) + 0x20)
& 0x7ffffffffff8) + 0x38)

Yep, you get to manually replicate this in LLDB to make sure this works!

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 446

Note: I’ll repeat this once more: this will NOT work for Objective-C classes that
haven’t been initialized yet. There’s a reason why you’re using a UIView, because if
you can see the UI on your screen, then the UIView class has definitely been
initialized and at least one UIView has been created.

In LLDB, go after the UIView class:

(lldb) p/x [UIView class]
(Class) $1 = 0x000000010c09ce60 UIView

You’ll get a different address. Copy that to your clipboard.

Take that address and offset it by 0x20 and view the memory at that location:

(lldb) x/gx '0x000000010c09ce60 + 0x20'

You’ll get some value:

0x10c09ce80: 0x0000608000064b80

AND that value with 0x7ffffffffff8 (that’s 10 f’s):

(lldb) p/x 0x7ffffffffff8 & 0x0000608000064b80

You’ll get another number:

0x0000608000064b80

Take that value, offset it by 0x38 and dereference it.

(lldb) x/gx '0x0000608000064b80 + 0x38'

You’ll get something like:

0x608000064bb8: 0x000000010bce319f

See if the value at 0x000000010bce319f (or at least for me) contains the char* pointer.

(lldb) po (char *)0x000000010bce319f

If everything went well, you’ll get your char* representation for UIView.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 447

Yay! Pointers!

Create a new regex command to verify everything I’ve told you is true.

Just enter this into the console; no need to put this in your ~/.lldbinit file:

command regex getcls 's/(.+)/expression -lobjc -O -- (char *)*(uint64_t
)(((uint64_t *)((*(uint64_t *)%1) + 0x20) & 0x7ffffffffff8) + 0x38)/'

This grabs the char* class name from any instance whose class has already been loaded

into your process.

Once you’ve entered this into your LLDB console, give it a go on the known-to-work

UIView:

(lldb) getcls [UIView new]

Now go after something that hasn’t been initialized or has had any methods executed

for that class, like UIAlertController:

(lldb) getcls [UIAlertController new]

You’ll get nil, since this class hasn’t executed any code yet that’s unique for the class.

(lldb) po [UIAlertController class]

Re-execute the getcls command:

(lldb) getcls [UIAlertController new]

You’ll now get a reference to the char* representation of UIAlertController.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 448

Remember if any unique method for that class is executed, the Objective-C runtime
loads that class in.

Now, the class (i.e. -[NSObject class]) method is not unique for UIAlertController,

but guess what is?

You’re po’ing this object and the debugDescription and description methods are

unique (overridden) to this class.

Therefore, just by po’ing a UIAlertController class, it’ll load it into the runtime!

Run your custom command, methods, that you created in Chapter 14, “Dynamic

Frameworks” on UIAlertController to verify if you have any doubts.

Scary assembly, part II
It’s time to revisit the second part of interest in the objc_class::demangledName(bool)

C++ function. This assembly chunk will focus on what the logic does if the initial

location for that char* is not in the initial location of interest — that is, if the class isn’t

loaded yet.

You need to create a breakpoint on assembly instruction offset 61, the instruction

immediately following the instruction on offset 55.

You could blindly call classes to see what classes aren’t loaded in the runtime, but I

haven’t a clue what’s in your process, and you have no clue what’s in mine!

Instead, create a symbolic breakpoint that stops on offset 61 of

objc_class::demangledName(bool).

Create a symbolic breakpoint in Xcode using the following details:

• Use dlopen for the symbol.

• In action 1: remove this breakpoint using br dis 1.

• In action 2: set a breakpoint on offset 61 of objc_class::demangledName(bool) with

this command:

br set -M objc_class::demangledName(bool) -R 61

• Select "Automatically continue after evaluating actions".

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 449

Rebuild and run the VCTransitions application.

You won’t get very far into your program before this breakpoint is hit; you can see dyld

is still busy setting stuff up.

Round two; here we go:

• Offset 61: Provided the initial location in memory was nil, control continues to 61

where rax + 0x8 is dereferenced and stored into rax again.

• Offset 65: The value 0x18 is added to rax and stored back into rax. rax could be a

struct that is holding a value of interest, which could explain offsetting this address.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 450

• Offset 69: The value at rax is dereferenced and stored into rbx, which will get passed

into rdi 2 instructions later. After that, a call instruction occurs, which by the

disassembly commentary, looks to expect a char const * as the first parameter.

This is the “interesting” part of this function to you. After that, this function calls the

copySwiftV1DemangledName function and sets up the logic to load the class into the

Objective-C runtime.

But for you, this is as far as you need to explore this function.

Feel free to ensure that rdi will always produce a valid char* at offset 77, but again, that

will be something you can do on your own time. You’ve still got a DTrace script to write.

Converting research into code
You’ve done the necessary research to figure out how to traverse memory to get the

character array representation of a class. Time to implement this thing.

Included in the starter script is a skeleton DTrace script named msgsendsnoop.d.

You’ll start with this DTrace script and build out the code for it. Once working and

tested, you’ll transfer that code into a LLDB Python script, which will dynamically

generate the code you want.

In Terminal cd into the starter directory. You can drag and drop the directory into

Terminal to autocomplete.

cat the contents of this script:

cat ./msgsendsnoop.d

Here’s the output from cat:

#!/usr/sbin/dtrace -s
#pragma D option quiet

dtrace:::BEGIN
{
 printf("Starting... Hit Ctrl-C to end.\n");
}

pid$target::objc_msgSend:entry
{
 this->selector = copyinstr(arg1);
 printf("0x%016p, +|-[%s %s]\n", arg0, "__TODO__",
 this->selector);
}

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 451

Let’s break this down. This script will stop on the objc_msgSend entry probe with the

appropriate PID passed in (thanks to the pid$target provider). Once hit, the selector’s

char* is copied into the kernel and printed.

As an example of what will happen, let’s say a -[UIView initWithFrame:] is about to be

called. The following will print out:

0x00000000deadbeef, +|-[__TODO__ initWithFrame:]

Verify this is true by tracing all the objc_msgSend calls in the VCTransitions

application:

sudo ./msgsendsnoop.d -p `pgrep VCTransitions`

Tap around on some classes. Hopefully this gives you an idea of how frequently this

method gets called.

It’s time to fix that annoying __TODO__ and replace it with the actual name of the class.

Open up msgsendsnoop.d and replace the existing pid$target::objc_msgSend:entry

code with the following:

pid$target::objc_msgSend:entry
{
 /* 1 */
 this->selector = copyinstr(arg1);
 /* 2 */
 size = sizeof(uintptr_t);
 /* 3 */
 this->isa = *((uintptr_t *)copyin(arg0, size));

 /* 4 */
 this->rax = *((uintptr_t *)copyin((this->isa + 0x20), size));

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 452

 this->rax = (this->rax & 0x7ffffffffff8);

 /* 5 */
 this->rbx = *((uintptr_t *)copyin((this->rax + 0x38), size));

 this->rax = *((uintptr_t *)copyin((this->rax + 0x8), size));

 /* 6 */
 this->rax = *((uintptr_t *)copyin((this->rax + 0x18), size));

 /* 7 */
 this->classname = copyinstr(this->rbx != 0 ?
 this->rbx : this->rax);
 printf("0x%016p +|-[%s %s]\n", arg0, this->classname,
 this->selector);
}

Note: I would recommend you type in each line and make sure it runs, instead of
typing in everything at once. Some DTrace script errors can be tricky to hunt
down.

Deep breath. Here’s what each line does:

1. this->selector does a copyinstr, because you know the second parameter (aka

arg1) is an Objective-C selector (aka a C string). Since C char*s end with a null

character, DTrace can automatically determine how much data to read.

2. In a moment, you’re going to copyin some data. However, copyin expects a size,

because unlike a string, DTrace doesn’t know when the arbitrary data ends. You

declare a variable named size, which equals the length of a pointer. In x64, this will

be 8 bytes.

3. This is getting the reference to the class of the instance. Remember, the

dereferenced pointer at the start address of a Objective-C or Swift instance will

point to the class.

4. Now for the fun part you learned about from the assembly in

objc_class::demangledName(bool). You’ll replicate the logic found in the registers,

as well as even use the same names for the registers! You’re using rax to mimic the

logic that this function performs.

5. This is the logic where (rax + 0x38) gets set to this->rbx, just like in the actual

assembly.

6. This is the final line if the value this->rbx is 0 (aka the class has not been loaded

yet).

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 453

7. You are using a ternary operator to figure out which clause local variable to use. If

this->rbx is non-null, use it. Otherwise, reference this->rax.

Save your work. Jump over to Terminal and relaunch this DTrace script:

sudo ./msgsendsnoop.d -p `pgrep VCTransitions`

Woooooooooooooooooot! That crazy hack actually worked!

Scanning the content in your script, it looks like the script is throwing errors

occasionally when objc_msgSend is calling a nil object (i.e. RDI, aka arg0, is 0x0).

You can view only the errors with the following command:

sudo ./msgsendsnoop.d -p `pgrep VCTransitions` | grep invalid

Let’s fix that now with a simple predicate. Immediately following

pid$target::objc_msgSend:entry, add the following predicate so it looks like this:

pid$target::objc_msgSend:entry / arg0 > 0x100000000 /

This says, “Don’t run this DTrace action if the first param is nil or a section of memory

that is not utilized.”

Typically, in a macOS userland process, this section of memory is off-limits for reading,

writing, and executing. If anything is below the number 0x100000000, DTrace ain’t

gonna like it, along with anything else reading memory there.

Therefore, if it’s below that number, just have DTrace skip it. You can of course, confirm

this using LLDB with the following command:

(lldb) image dump sections VCTransitions

But that’s for you to verify when you’re bored. You still gotta finish this script.

Removing noise
To be honest, I couldn’t care less about tracing memory-management code the compiler

has generated. This means anything with retain or release needs to get outta here.

Make a new clause with the same DTrace probe above your current probe:

pid$target::objc_msgSend:entry
{
 this->selector = copyinstr(arg1);
}

/* old code below */

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 454

pid$target::objc_msgSend:entry / arg0 > 0x100000000 /

You’re now declaring the selector in a new clause before the main clause with all the

memory jumping logic. This will let you filter Objective-C methods inside the predicate

section of the main clause.

Speaking of which, augment the predicate in the main clause now:

pid$target::objc_msgSend:entry / arg0 > 0x100000000 / &&
 this->selector != "retain" &&
 this->selector != "release" /

This will now ignore any Objective-C selectors that equal retain or release.

While you’re at it, there’s no need to reassign the this->selector in the main clause

now you’re doing it in the other one. Although it isn’t harmful, it’s superfluous logic.

Remove it, or don’t... whatever makes you happy.

Your two clauses should now (hopefully somewhat?) look like this:

pid$target::objc_msgSend:entry
{
 this->selector = copyinstr(arg1);
}

pid$target::objc_msgSend:entry / arg0 > 0x100000000 / &&
 this->selector != "retain" &&
 this->selector != "release" /
{
 size = sizeof(uintptr_t);
 this->isa = *((uintptr_t *)copyin(arg0, size));

 this->rax = *((uintptr_t *)copyin((this->isa + 0x20), size));
 this->rax = (this->rax & 0x7ffffffffff8);
 this->rbx = *((uintptr_t *)copyin((this->rax + 0x38), size));

 this->rax = *((uintptr_t *)copyin((this->rax + 0x8), size));
 this->rax = *((uintptr_t *)copyin((this->rax + 0x18), size));

 this->classname = copyinstr(this->rbx != 0 ?
 this->rbx : this->rax);
 printf("0x%016p +|-[%s %s]\n", arg0, this->classname,
 this->selector);
}

Relaunch the script:

sudo ./msgsendsnoop.d -p `pgrep VCTransitions`

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 455

Oh man, that’s sooo much better.

But still, that’s too much noise. Time to take this script and combine it with LLDB to

only produce output that pertains to code in the main executable.

Limiting scope with LLDB
Included within the starter folder is a LLDB Python script that creates a DTrace script

and runs it with the exact logic you’ve just implemented.

Womp womp... spoiler alert. You could have just used that script in the first place. But

that wouldn’t have been as much fun.

This file is named snoopie.py. Take this file and copy it into your ~/lldb directory. If

you’ve followed along with Chapter 22, “SB Examples, Improved Lookup”, you have a

script in there named lldbinit.py that automatically loads all the scripts in the same

directory for you.

If you were too cool for school and didn’t do that chapter, you’ll need to add the

following line of code into your ~/.lldbinit file:

command script import ~/lldb/snoopie.py

You’ll use a creative solution to filter out the code in this DTrace script to only trace
Objective-C/dynamic Swift code belonging to the VCTransitions executable. Normally,

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 456

when snooping code in a framework, I’ll often grab the __TEXT section of a module and
compare the instruction pointer to the upper and lower bounds of the __TEXT section
that’s loaded in memory (the section in memory responsible for executable code). If the
instruction pointer is between the upper and lower bounds, then you can assume you
want to use DTrace to trace the code.

Unfortunately, you’re going after objc_msgSend, the chokepoint used for Objective-C

code in all modules. This means that you can’t rely on the instruction pointer to tell

you which module you’re in.

Instead, you need to go about this by isolating the addresses of a class to only be

contained within the __DATA section of the main executable.

Head on back to your Xcode project, VCTransitions.

Build, run, stop execution and bring up LLDB. Then type the following:

(lldb) p/x (void *)NSClassFromString(@"ObjCViewController")

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 457

You’ll get the address to the ObjCViewController class:

(void *) $0 = 0x000000010db34080

Take this address and determine what section of memory this thing is located in.

(lldb) image lookup -a 0x000000010db34080

You’ll get something similar to the following:

Address: VCTransitions[0x0000000100012080]
(VCTransitions.__DATA.__objc_data + 40)
Summary: (void *)0x000000010db34058

Therefore, you can deduce this class is within the VCTransitions __DATA section inside

the __objc_data segment. You’ll use the LLDB Python module to find the upper and

lower bounds of this __DATA section.

Now you’re going to use the good old script command to find how you can create this

code through the LLDB module. Back in LLDB, type the following:

(lldb) script path = lldb.target.executable.fullpath

This will give you the SBFileSpec representing the executable, VCTransitions, and

assign it to the variable path. Print out the path to make sure it’s valid:

(lldb) script path

You’ll get the full path to the location of this executable. You can use this path variable

to get the correct SBModule from the SBTarget. Type the following into LLDB:

(lldb) script print lldb.target.module[path]

You’ll get the SBModule representing the main executable.

Within a SBModule, there’s SBSections. You can get all sections within an SBModule

using the sections property, or you can get a specific section using section[index]. Yep,

that property conforms to Python’s __getitem__. Type the following into LLDB:

(lldb) script print lldb.target.module[path].section[0]

You’ll get something like:

[0x0000000000000000-0x0000000100000000) VCTransitions.__PAGEZERO

The implementation of __getitem__ can also let SBSection act as a dictionary. So you

can also access the __PAGEZERO section like so:

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 458

(lldb) script print lldb.target.module[path].section['__PAGEZERO']

This means you can easily access the __DATA SBSection by using the following:

(lldb) script print lldb.target.module[path].section['__DATA']

Cool, that works. Assign this SBSection to a variable named section, like so:

(lldb) script section = lldb.target.module[path].section['__DATA']

You now have a reference to the correct section. There are segments in the __DATA

section you can dissect, but you might as well grab the whole section, since it’s one

contiguous region in memory.

Get the load address for the section, like so:

(lldb) script section.GetLoadAddress(lldb.target)

This will print the start location. Grab the size as well, while you’re at it:

(lldb) script section.size

So what does this give you? You can make a DTrace predicate that checks if the class is

in between these values in memory. If they are, execute the DTrace action. If they’re

not, ignore.

Let’s implement this!

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 459

Fixing up the snoopie script
As indicated, this snoopie.py script works as-is, so you’re just going to add some small

logic to the predicate to filter only instances.

Open up ~/lldb/snoopie.py and navigate to the generateDTraceScript function.

Remove the dataSectionFilter = ... line.

Then add the following code in its place:

target = debugger.GetSelectedTarget()
path = target.executable.fullpath
section = target.module[path].section['__DATA']
start_address = section.GetLoadAddress(target)
end_address = start_address + section.size

dataSectionFilter = '''{} <= *((uintptr_t *)copyin(arg0,
 sizeof(uintptr_t))) &&
 *((uintptr_t *)copyin(arg0, sizeof(uintptr_t))) <= {}
'''.format(start_address, end_address)

The interesting point here is you’re taking the arg0 and dereferencing it if (and only if)

arg0 is greater than 0x100000000, which indicates a valid instance in memory.

That’s it! No more code! You’re all done!

Save your work, jump over to the LLDB console, reload the contents in LLDB either

through your custom reload_script command or manually by command script import

~/.lldbinit.

Once reloaded, try this thing out. In LLDB:

(lldb) snoopie

Paste the contents to a Terminal window and have fun.

DTrace now only profiles code that’s in your main (stripped) executable.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 460

Have fun with this script on some other apps on your computer!

Where to go from here?
You’ve got some homework to do on your end. This script will not play nicely with

Objective-C categories. For example, there could be a class that’s implemented within a

different module, which has an Objective-C category implemented within the main

executable. You’ll need to figure out some creative way to check if the Objective-C

selector in objc_msgSend was implemented within the main executable or not.

In addition, the printf in your current code doesn’t indicate whether arg0 is a class

method or not. You’ll need to figure out how to determine if the arg0 parameter is a

class or an instance solely by jumping through memory.

How can you go about finding this?

• If arg0 is an instance of a class, the isa param will point to a non-meta class.

• If arg0 is the class, then the isa param will point to the meta class.

• Explore the assembly of class_isMetaClass to determine what values inside a Class

indicate if it’s a meta class or not.

Once you’ve found how to jump through memory to determine if a class is a meta class

or not, replicate the logic found in class_isMetaClass in your DTrace script.

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 461

Since this is either an instance of a class or the Class object itself, you can use a

ternary operator inside your DTrace script with something similar to the following:

this->isMeta = ... // logic here
this->isMetaChar = this->isMeta ? '+' : '-'

printf("0x%016p %c[%s %s]\n", arg0, this->isMetaChar,
 this->classname,
 this->selector);

Heh... isMetaChar. That will totally be a Pokémon name some day.

Good luck!

Advanced Apple Debugging Chapter 27: DTrace vs objc_msgSend

raywenderlich.com 462

A
Appendix A: LLDB
Cheatsheet

A cheatsheet for commands and ideas on how to use LLDB.

Getting help
(lldb) help

List all commands and aliases.

(lldb) help po

Get help documentation for po (expression) command.

(lldb) help break set

Get help documentation for breakpoint set.

(lldb) apropos step-in

Search through help documentation containing step-in.

Finding code
(lldb) image lookup -rn UIAlertController

Look up all code containing UIAlertController that's compiled or loaded into an

executable.

raywenderlich.com 463

(lldb) image lookup -rn (?i)hosturl

Case insensitive search for any code that contains "hosturl".

(lldb) image lookup -rn 'UIViewController\ set\w+:\]'

Look up all setter property methods UIViewController implements or overrides.

(lldb) image lookup -rn . Security

Look up all code located within the Security module.

(lldb) image lookup -a 0x10518a720

Look up code based upon address 0x10518a720.

(lldb) image lookup -s mmap

Look up code for the symbol named mmap.

Breakpoints
(lldb) b viewDidLoad

Creates a breakpoint on all methods named viewDidLoad for both Swift and Objective-

C.

(lldb) b setAlpha:

Creates a breakpoint on either the setAlpha: Objective-C method or the setter of the

Objective-C alpha property.

(lldb) b -[CustomViewControllerSubclass viewDidLoad]

Creates a breakpoint on the Objective-C method [CustomViewControllerSubclass

viewDidLoad].

(lldb) rbreak CustomViewControllerSubclass.viewDidLoad

Creates a regex breakpoint to match either an Objective-C or Swift class

CustomViewControllerSubclass which contains viewDidLoad. Could be Objective-C -

[CustomViewControllerSubclass viewDidLoad] or could be Swift

ModuleName.CustomViewControllerSubclass.viewDidLoad () -> ().

Advanced Apple Debugging Appendix A: LLDB Cheatsheet

raywenderlich.com 464

(lldb) breakpoint delete

Deletes all breakpoints.

(lldb) breakpoint delete 2

Deletes breakpoint ID 2.

(lldb) breakpoint list

List all breakpoints and their IDs.

(lldb) rbreak viewDid

Creates a regex breakpoint on .*viewDid.*.

(lldb) rbreak viewDid -s SwiftRadio

Creates a breakpoint on .*viewDid.*, but restricts the breakpoint(s) to the SwiftRadio

module.

(lldb) rbreak viewDid(Appear|Disappear) -s SwiftHN

Creates a breakpoint on viewDidAppear or viewDidDisappear inside the SwiftHN

module.

(lldb) rb "\-\[UIViewController\ set" -s UIKit

Creates a breakpoint on any Objective-C style breakpoints containing -

[UIViewController set within the UIKit module.

(lldb) rb . -s SwiftHN -o

Create a breakpoint on every function in the SwiftHN module, but remove all

breakpoints once the breakpoint is hit.

(lldb) rb . -f ViewController.m

Create a breakpoint on every function found in ViewController.m.

Expressions
(lldb) po "hello, debugger"

Prints "hello, debugger" regardless of the debugging context.

Advanced Apple Debugging Appendix A: LLDB Cheatsheet

raywenderlich.com 465

(lldb) expression -lobjc -O -- [UIApplication sharedApplication]

Print the shared UIApplication instance in an Objective-C context.

(lldb) expression -lswift -O -- UIApplication.shared

Print the shared UIApplication instance in a Swift context.

(lldb) b getenv
(lldb) expression -i0 -- getenv("HOME")

Creates a breakpoint on getenv, executes the getenv function, and stops at the

beginning of the getenv function.

(lldb) expression -u0 -O -- [UIApplication test]

Don't let LLDB unwind the stack if you’re executing a method that will cause the

program to crash.

(lldb) expression -p -- NSString *globalString = [NSString
stringWithUTF8String: "Hello, Debugger"];
(lldb) po globalString
Hello, Debugger

Declares a global NSString* called globalString.

(lldb) expression -g -O -lobjc -- [NSObject new]

Debug the debugger that's parsing the [NSObject new] Objective-C expression.

Stepping
(lldb) thread return false

Return early from code with false.

(lldb) thread step-in
(lldb) s

Step in.

(lldb) thread step-over
(lldb) n

Step over.

Advanced Apple Debugging Appendix A: LLDB Cheatsheet

raywenderlich.com 466

(lldb) thread step-out
(lldb) finish

Step out of a function.

(lldb) thread step-inst
(lldb) ni

Step in if about to execute a function. Step an assembly instruction otherwise.

GDB formatting
(lldb) p/x 128

Print value in hexadecimal.

(lldb) p/d 128

Print value in decimal.

(lldb) p/t 128

Print value in binary.

(lldb) p/a 128

Print value as address.

(lldb) x/gx 0x000000010fff6c40

Get the value pointed at by 0x000000010fff6c40 and display in 8 bytes.

(lldb) x/wx 0x000000010fff6c40

Get the value pointed at by 0x000000010fff6c40 and display in 4 bytes.

Memory
(lldb) memory read 0x000000010fff6c40

Read memory at address 0x000000010fff6c40.

Advanced Apple Debugging Appendix A: LLDB Cheatsheet

raywenderlich.com 467

(lldb) po id $d = [NSData dataWithContentsOfFile:@"..."]
(lldb) mem read `(uintptr_t)[$d bytes]` `(uintptr_t)[$d bytes] +
(uintptr_t)[$d length]` -r -b -o /tmp/file

Grab an instance of a remote file and write it to /tmp/file on your computer.

Registers & assembly
(lldb) register read -a

Display all registers on the system.

(lldb) register read rdi rsi

Read the RSI and the RDI register in x64 assembly.

(lldb) register write rsi 0x0

Set the RSI register to 0x0 in x64 assembly.

(lldb) register write rflags `$rflags ^ 64`

Toggle the zero flag in x64 assembly (augment if condition logic).

(lldb) register write rflags `$rflags | 64`

Set the zero flag (set to 1) in x64 assembly (augment if condition logic).

(lldb) register write rflags `$rflags & ~64`

Clear the zero flag (set to 0) in x64 assembly (augment if condition logic).

(lldb) register write pc `$pc+4`

Increments the program counter by 4.

(lldb) disassemble

Display assembly for function in which you’re currently stopped.

(lldb) disassemble -p

Disassemble around current location; useful if in the middle of a function.

(lldb) disassemble -b

Disassemble function while showing opcodes; useful for learning what is responsible

for what.

Advanced Apple Debugging Appendix A: LLDB Cheatsheet

raywenderlich.com 468

(lldb) disassemble -n '-[UIViewController setTitle:]'

Disassemble the Objective-C -[UIViewController setTitle:] method.

(lldb) disassemble -a 0x000000010b8d972d

Disassemble the function that contains the address 0x000000010b8d972d.

Modules
(lldb) image list

List all modules loaded into the executable's process space.

(lldb) image list -b

Get the names of all the modules loaded into the executable's process space.

(lldb) process load /Path/To/Module.framework/Module

Load the module located at path into the executable's process space.

Advanced Apple Debugging Appendix A: LLDB Cheatsheet

raywenderlich.com 469

B
Appendix B: Python
Environment Setup

It’s not my place to force an IDE on you for Python development. However, if you’re

actively looking for a Python editor for the Python related chapters — then we should

have a little chat.

Getting Python
Good news: if you have a Mac, it automatically ships (at the time of writing) with

Python version 2.7. This is the same version LLDB uses.

If, for some weird reason, you like to rm random things in Terminal and you need to

reinstall Python, you can download Python here: https://www.python.org/downloads/.

Make sure to download the version of Python that matches the version packaged with

LLDB. If you’re not sure which version to get, you can get the LLDB Python version

through Terminal:

lldb
(lldb) script import sys; print sys.version

Don’t worry about the final part of the version number. If you have 2.7.12 and LLDB

quotes 2.7.10, that will work just fine.

Python text editors
A list of Python editors can be found here: https://wiki.python.org/moin/

PythonEditors.

raywenderlich.com 470

For the small, quick Python scripts you’ll write in this book, I would recommend using

Sublime Text. Sublime Text can be found at https://www.sublimetext.com/; although

it’s a paid application, it’s free to try with no time limit.

Both this book, as well as all my LLDB Python scripts, were written (and debugged)

through Sublime Text 3.

You’ll likely want to install a couple of additional components to Sublime Text to make

developing and debugging LLDB Python scripts easier.

The easiest way to install these additional components is to use the Sublime Text

Package Control, which is an excellent package manager for Sublime Text. You can find

instructions on how to install the Package Control at https://packagecontrol.io/

installation;

Once installed, you’ll be able to easily search for new components designed for Sublime

Text by pressing ⌘ + Shift + P and typing install. A selection item of Package

Control: Install Package will appear. Select this option.

Advanced Apple Debugging Appendix B: Python Environment Setup

raywenderlich.com 471

After the package manager has been installed, you can search for packages that will

help you in Python development. Here’s a few packages I would recommend using if

you’re developing in Python:

• AutoPep8: Automatically formats Python code to conform to the PEP 8 style guide

using autopep8 and pep8 modules. https://packagecontrol.io/packages/AutoPEP8

• PythonBreakpoints: A Sublime Text plugin to quickly set Python breakpoints by

injecting the set_trace() call of pdb or another debugger of your choice. https://

packagecontrol.io/packages/Python%20Breakpoints

• Anaconda: Anaconda turns your Sublime Text 3 into a fully featured Python

development IDE including autocompletion, code linting, autopep8 formatting,

McCabe complexity checker Vagrant and Docker support for Sublime Text 3 using

Jedi, PyFlakes, pep8, MyPy, PyLint, pep257 — and McCabe will never freeze your

Sublime Text 3. https://packagecontrol.io/packages/Anaconda

Advanced Apple Debugging Appendix B: Python Environment Setup

raywenderlich.com 472

Working with the LLDB Python module
When working with Python, you’ll often import modules to execute code or classes

within that module. When working with LLDB’s Python module, you’ll sometimes come

across an import lldb somewhere in the script, usually right at the top.

By default, Xcode will launch a version of Python that’s bundled within Xcode. When

Xcode launches this bundled version of Python, the path to where the lldb module is

located is set up automatically. However, in your normal Python development, you

won’t have access to this module if you were to execute your script through Sublime

Text. As a result, you’ll need to modify your PYTHONPATH environment variable to include

the appropriate directory where the lldb Python module lives.

In Terminal, ensure your ~/.bash_profile exists:

touch ~/.bash_profile

Open .bash_profile file in your favorite text editor (like Sublime!) and add the

following line of code:

export PYTHONPATH=/Applications/Xcode.app/Contents/SharedFrameworks/
LLDB.framework/Versions/A/Resources/Python:$PYTHONPATH

Note: This assumes your Xcode is located at /Applications/Xcode.app. If it isn’t,
because you particularly like being different, then you’ll need to change the path.

Save and close the file. You’ll be able to access the lldb module from any Python session

on your computer.

Doing this gives you the advantage of checking for syntax errors in Sublime Text (or

equivalent) during debugging time — instead of finding a syntax error when your script

is loaded into LLDB.

Advanced Apple Debugging Appendix B: Python Environment Setup

raywenderlich.com 473

CConclusion

Wow! You made it all the way to this conclusion! You either must have jumped straight

to this page or you’re way more masochistic than I could have anticipated.

If you have any questions or comments about the projects or concepts in this book, or

have any stories to tell from your own debugging adventures, please stop by our forums

at http://forums.raywenderlich.com.

From here, you have a few paths to explore depending on what you found most

interesting in this book.

• If exploring code in Python to make better debugging scripts interests you, then you

might want to see what other modules exist in Python 2.7 (or the equivalent Python

version LLDB has) to see how far down the rabbit hole you can go. You can find the

list of modules in Python 2.7 here: https://docs.python.org/2/py-modindex.html or

hunt down one of the many books on Amazon about Python.

• If reverse engineering Apple internals interests you, I would strongly recommend you

check out Jonathan Levin’s work on anything related to Apple, namely his updated

books like MacOS and iOS Internals, Volume III: Security & Insecurity at http://

www.newosxbook.com/.

• Also check out @snakeninny's free book, https://github.com/iosre/

iOSAppReverseEngineering/

• If more generic reverse engineering/hacking interests you, then you might be

interested in Hacking: The Art of Exploitation, 2nd Edition by Jon Erickson at

https://www.nostarch.com/hacking2.htm.

raywenderlich.com 474

• If you want the equivalent of an LLDB newsletter, I would recommend to (nicely!)

stalk Jim Ingham’s activity on Stack Overflow http://stackoverflow.com/users/

2465073/jim-ingham. He works on LLDB at Apple, and combing through his

responses on StackOverflow will give you a tremendous amount of insight into LLDB.

In addition, check out the LLDB archives http://lists.llvm.org/pipermail/lldb-dev/.

There's a lot to dig through, but you can find some incredibly useful hidden gems

from the LLDB authors.

• If DTrace interested you, check out http://www.brendangregg.com/dtracebook/

index.html. This book will cover a much wider range of how to use DTrace than what

I've discussed.

And finally... here's a diff of Jake when this book project began in June 2016 to when my

editors finally ripped this book from my cold, lifeless fingers.

Yeah, I am totally that annoying dude on Facebook that constantly posts pictures of his

children and/or dogs :]

Thank you for purchasing this book. Your continued support is what makes the books,

tutorials, videos and other things we do at raywenderlich.com possible. We truly

appreciate it!

– Derek, Darren, Matt and Chris

The Advanced Apple Debugging & Reverse Engineering team

Advanced Apple Debugging Conclusion

raywenderlich.com 475

	Table of Contents : Extended
	Introduction
	What you need
	Who this book is for
	Book source code and forums
	Book updates
	Custom LLDB scripts repo
	License
	Acknowledgments
	About the cover

	Section I: Beginning LLDB Commands
	Chapter 1: Getting Started
	Getting around Rootless
	Attaching LLDB to Xcode
	Where to go from here?

	Chapter 2: Help & Apropos
	The "help" command
	The "apropos" command
	Where to go from here?

	Chapter 3: Attaching with LLDB
	Where to go from here?

	Chapter 4: Stopping in Code
	Signals
	LLDB breakpoint syntax
	Finally creating breakpoints
	Where to go from here?

	Chapter 5: Expression
	Formatting p & po
	Swift vs Objective-C debugging contexts
	User defined variables
	Where to go from here?

	Chapter 6: Thread, Frame & Stepping Around
	Stack 101
	Examining the stackʼs frames
	Stepping
	Examining data in the stack
	Where to go from here?

	Chapter 7: Image
	Wait modules?
	Snooping around
	Where to go from here?

	Chapter 8: Persisting & Customizing Commands
	Persisting how?
	Creating the lldbinit file
	Command aliases with arguments
	Where to go from here?

	Chapter 9: Regex Commands
	command regex
	Executing complex logic
	Chaining regex inputs
	Supplying multiple parameters
	Where to go from here?

	Section II: Understanding Assembly
	Chapter 10: Assembly Register Calling Convention
	Assembly 101
	x86_64 register calling convention
	Objective-C and registers
	Putting theory to practice
	Swift and registers
	RAX, the return register
	Changing around values in registers
	Registers and SDK
	Where to go from here?

	Chapter 11: Assembly & Memory
	Setting up the Intel-Flavored Assembly ExperienceTM
	The RIP register
	Registers and breaking up the bits
	Breaking down the memory
	Endianness this stuff is reversed?
	Where to go from here?

	Chapter 12: Assembly and the Stack
	The stack, revisited
	Stack pointer & base pointer registers
	Stack related opcodes
	Observing RBP & RSP in action
	The stack and 7+ parameters
	The stack and debugging info
	Stack exploration takeaways
	Where to go from here?

	Section III: Low Level
	Chapter 13: Hello, Ptrace
	System calls
	The foundation of attachment, ptrace
	ptrace arguments
	Creating attachment issues
	Getting around PT_DENY_ATTACH
	Other anti-debugging techniques
	Where to go from here?

	Chapter 14: Dynamic Frameworks
	Why dynamic frameworks?
	Statically inspecting an executableʼs frameworks
	Modifying the load commands
	Loading frameworks at runtime
	Exploring frameworks
	Loading frameworks on an actual iOS device
	Where to go from here?

	Chapter 15: Hooking & Executing Code with dlopen & dlsym
	The Objective-C runtime vs. Swift & C
	Setting up your project
	Easy mode: hooking C functions
	Hard mode: hooking Swift methods
	Where to go from here?

	Chapter 16: Exploring and Method Swizzling Objective-C Frameworks
	Between iOS 10 and 11
	Sidestepping checks in prepareDebuggingOverlay
	Introducing Method Swizzling
	Where to go from here?

	Section IV: Custom LLDB Commands
	Chapter 17: Hello Script Bridging
	Credit where credit's due
	Python 101
	Creating your first LLDB Python script
	Setting up commands efficiently
	Where to go from here?

	Chapter 18: Debugging Script Bridging
	Debugging your debugging scripts with pdb
	pdbʼs post mortem debugging
	expressionʼs Debug Option
	How to handle problems
	Where to go from here?

	Chapter 19: Script Bridging Classes and Hierarchy
	The essential classes
	Learning & finding documentation on script bridging classes
	Creating the BreakAfterRegex command
	Where to go from here?

	Chapter 20: Script Bridging with Options & Arguments
	Setting up
	The optparse Python module
	Adding options without params
	Adding options with params
	Passing parameters into the breakpoint callback function
	Real world example: exploring Swift return Strings with bar
	Where to go from here?

	Chapter 21: Script Bridging with SBValue & Memory
	A detour down memory layout lane
	SBValue
	lldb.value
	Where to go from here?

	Chapter 22: SB Examples, Improved Lookup
	Automating script creation
	lldbinit directory structure suggestions
	Implementing the lookup command
	Adding options to lookup
	Where to go from here?

	Chapter 23: SB Examples, Resymbolicating a Stripped ObjC Binary
	So how are you doing this, exactly?
	50 Shades of Ray
	The "stripped" 50 Shades of Ray
	Building sbt.py
	Implementing the code
	Where to go from here?

	Chapter 24: SB Examples, Malloc Logging
	Setting up the scripts
	MallocStackLogging explained
	Hunting in getenv
	Testing the functions
	Turning numbers into stack frames
	Stack trace from a Swift object
	DRY Python code
	Where to go from here?

	Section V: DTrace
	Chapter 25: Hello, DTrace
	The bad news
	Jumping right in
	DTrace Terminology
	Learning while listing probes
	A script that makes DTrace scripts
	Where to go from here?

	Chapter 26: Intermediate DTrace
	Getting started
	DTrace & Swift in theory
	DTrace variables & control flow
	Inspecting process memory
	Playing with open syscalls
	DTrace & destructive actions
	Where to go from here?

	Chapter 27: DTrace vs objc_msgSend
	Building your proof-of-concept
	How to get around no probes in a stripped binary
	Researching method calls using DTrace!
	Scary assembly, part II
	Converting research into code
	Limiting scope with LLDB
	Fixing up the snoopie script
	Where to go from here?

	Appendix A: LLDB Cheatsheet
	Getting help
	Finding code
	Breakpoints
	Expressions
	Stepping
	GDB formatting
	Memory
	Registers & assembly
	Modules

	Appendix B: Python Environment Setup
	Getting Python
	Python text editors
	Working with the LLDB Python module

	Conclusion

